Advertisement

Somatic Embryogenesis of Ocotea catharinensis: An Endangered Tree of the Mata Atlantica (S. Brazil)

  • A. M. Viana
  • S. H. Mantell
Part of the Forestry Sciences book series (FOSC, volume 59)

Abstract

Ocotea catharinensis Mez. (Lauraceae) is an endangered native forest tree species of the atlantic forest (the Mata Atlantica) located in the South of Brazil (Fig. 1A). This forest is considered to be the most endangered ecosystem in the world with only 5% of the original forest remaining. Before 1980, this tree was the most abundant in the Atlantic Forest in Santa Catarina State, at altitudes varying from 300 to 700 m above sea level and represented approximately one-third of the total wood biomass (Klein, 1980).

Keywords

Somatic Embryo Somatic Embryogenesis Zygotic Embryo Cell Aggregate Embryogenic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, W.C. 1978. Tissue culture propagation of Rhododendrons. In Vitro. 14: 334–350.Google Scholar
  2. Arrilaga, I., J.J. Tobolski and S.A. Merkle. 1994. Advances in somatic embryogenesis and plant production in black locust (Robinia pseudoacacia L.). Plant Cell Rep. 13:171–175.CrossRefGoogle Scholar
  3. Berjak, P., J.M. Farrant and N.W. Pammenter. 1989. The basis of recalcitrant seed behavior. Cell biology of the homoiohydrous seed condition. In Recent Advances in The Development and Germination of Seeds. pp. 89–108 (ed. R.B. Taylorson). New York: Plenum Press.CrossRefGoogle Scholar
  4. Berjak, P., J.M. Farrant, D.J. Mycock, N.W. Pammenter. 1990. Recalcitrant (homoiohydrous) seeds: the enigma of their desiccation-sensitivity. Seed Sci Technol. 18: 297–310.Google Scholar
  5. Carvalho, P.E.R. 1994. Espécies Florestais Brasileiras. Recomendaçöes Silviculturais, Potencialidades e Uso da Madeira. EMBRAPA-CNPF/SPI, Brasil.Google Scholar
  6. Dure, L. III, M. Crouch, J. Harada, T.H.D. Ho, J. Mundy, R. Quatrano, T. Thomas and Z.R. Sung. 1989. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol. 12: 475–486.CrossRefGoogle Scholar
  7. Farrant, J.M., P. Berjak and N.W. Pammenter. 1993. Studies on the development of the desiccation-sensitive (recalcitrant) seeds of Avicennia marina (Forssk.) Vierh.: The acquisition of germinability and response to storage and dehydration. Ann Bot. 71: 405–410.CrossRefGoogle Scholar
  8. Gahan, P.B. 1984. Plant Hystochemistry and Cytochemistry. New York: Academic Press.Google Scholar
  9. Gahan, P.B., J. McLean, M. Kalina and W. Sharma. 1967. Freeze sectioning of plant tissues: the technique and its use in plant histochemistry. J Exp Bot. 18: 151–159.CrossRefGoogle Scholar
  10. Gamborg, O.L., R.A. Miller and K. Ojima]. 1968. Plant cell cultures. I. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 50: 151–158.PubMedCrossRefGoogle Scholar
  11. Grattapaglia, D., A.Y. Ciampi, R. Collevatti, A.M.M. Reis, B.M. Walter, F.B. Gandara and R.P.V. Brondani. 1998. Development and applications of genomic technologies for genetic conservation of forest trees. In Recent Advances in Biotechnology for Conservation and Management (eds. S.H. Mantell, S. Bruns, C. Tragardh and A.M. Viana). Stockholm: International Foundation for Science, in press.Google Scholar
  12. Haragushi, M., M. Motidome, M. Yoshida and O.R. Gottlieb. 1983. The chemistry of Brazilian Lauraceae. 69. Neolignans from Ocotea catharinensis. Phytochemistry. 22: 561–563.CrossRefGoogle Scholar
  13. Hilhorst, H.W.V. and C.M. Karssen. 1992. Seed dormancy and germination: the role of abscisic acid and gibberellins and the importance of hormone mutants. Plant Growth Reg. 11: 225–238.CrossRefGoogle Scholar
  14. IFS, 1998. Recent advances in Biotechnology for Tree Conservation and Management. (eds. S.H. Mantell, S. Bruns, C. Tragardh, A.M. Viana eds.) Stockholm: International Foundation for Science (in press).Google Scholar
  15. Ishige, M., M. Motidome, M. Yoshida and O.R. Gottlieb]. 1991. The chemistry of Brazilian Lauraceae. 94. Neolignans from Ocotea catharinensis. Phytochemistry. 30: 4121–CrossRefGoogle Scholar
  16. Kao, K.N. and M.R. Michayluk. 1975. Nutritional requirements for growth of Vicia hajastana cells and protoplasts at a very low population density in lipid media. Planta. 126: 105–110.CrossRefGoogle Scholar
  17. Klein, R.M. 1980. Ecologia da flora e vegetação do Vale do Itajai. Sellowia: 31/32: 9–389.Google Scholar
  18. Koornneef, M., M.L. Jorna, D.L.C. Brinkhorst-van der Swan and C.M. Karssen. 1982. The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germination gibberellin sensitive lines of Arabidopsis thaliana L. Heynh. Theor Appl Genet. 61: 385–393.Google Scholar
  19. Lloyd, G. and B. McCown. 1981. Commercially feasible micropropagation of mountain laurel (Kalmia latifolia) by use of shoot-tip culture. Int Plant Prop Soc Proc. 30: 421–427.Google Scholar
  20. Lordello, A.L.L. 1996. Constituintes químicos de folhas e de cultura de células e tecidos e Ocotea catharinensis Mez (Lauraceae). Tese de Doutorado, 160 pp., Universidade de São Paulo.Google Scholar
  21. Ma, W.W., J.F. Kozlowski and J.L. McLaughlin]. 1991. Bioactive neolignans from Endlicheria dysodantha. J Natural Products. 54: 1153–CrossRefGoogle Scholar
  22. Mathews, H. and H.Y. Wetzstein. 1993. A revised protocol for efficient regeneration of somatic embryos and acclimatization of plantlets in pecan, Carya illinoensis. Plant Sci. 91: 103–108.CrossRefGoogle Scholar
  23. Mantell, S.H., D.H. Pearson, L.P. Hazell and H. Smith. 1983. The effect of initial phosphate and sucrose levels on nicotine accumulation in batch suspension cultures of Nicotiana tabacum L. Plant Cell Rep. 2: 73–77.CrossRefGoogle Scholar
  24. Merckle, S.A. 1995. Strategies for dealing with limitation of somatic embryogenesis in hardwood trees. Plant Tiss Cult Biotechnol. 1: 112–121.Google Scholar
  25. Moura-Costa, P.M. 1992. Somatic embryogenesis and plant regeneration of Ocotea catharinenesis Mez. (Lauraceae), an endangered forest tree of S. Brazil. PhD. Thesis, University of London (Wye College), UK.Google Scholar
  26. Moura-Costa P.M., A.M. Viana and S.H. Mantell. 1993. In vitro plantlet regeneration of Ocotea catharinensis, an endangered Brasilian hardwood forest tree. Plant Cell Tiss Org Cult. 35: 279–286.CrossRefGoogle Scholar
  27. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 15: 473–497.CrossRefGoogle Scholar
  28. Rock, C.D. and R.S. Quatrano. 1995. The role of Hormones during seed development. In Plant Hormones (ed. P. Davies) pp. 671–697. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  29. Sakita, M.N. and M. Yatagai. 1992. Óleo essencial da casca de Ocotea catharinensis Mez. (Lauraceae). Anais do Congresso Nacional Sobre Essências Florestais Nativas 2: 684–687.Google Scholar
  30. Schenk, R.U. and A.C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot. 50: 199–204.CrossRefGoogle Scholar
  31. Tillberg, E. 1983. Levels of endogenous abscisic acid in achenes of Rosa rugosa during dormancy release and germination. Physiol Plant. 58: 243–248.CrossRefGoogle Scholar
  32. Tillberg, E. and N.J. Pinfield. 1982. Changes in abscisic acid levels during after ripening and germination of Acer platanoides L. seeds. New Phytol. 92: 167–172.CrossRefGoogle Scholar
  33. Viana, A.M. 1989. In vitro propagation of Ocotea catharinensis. Progress report for the IFS research grant agreement no. D/1265-1. International Foundation for Science, Sweden. 39 pp.Google Scholar
  34. Viana, A.M. 1993. In vitro propagation of Ocotea catharinensis. Progress report for the IFS research grant agreement no. D/1265-2. International Foundation for Science, Sweden. 49 pp.Google Scholar
  35. Viana, A.M. 1998. Somatic embryogenesis in Ocotea catharinensis Mez. (Lauraceae). In Recent Advances in Biotechnology for Conservation and Management (eds S.H. Mantell, S. Bruns, C. Tragardh and A.M. Viana). Stockholm: International Foundation for Science (in press).Google Scholar
  36. Viana, A.M., M.C. Mazza and S.H. Mantell. 1998. Biotechnology: potential applications for the conservation and sustainable exploitation of plants from Brazilian rain forests. In Conservation Biotechnology, (ed. E. Benson). London: Taylor and Francis (in press).Google Scholar
  37. White, P.R. (1963). The Cultivation of Animal and Plant Cells, 2nd edition. New York: Ronald Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • A. M. Viana
    • 1
  • S. H. Mantell
    • 2
  1. 1.Unit for Advanced Propagation Systems, Department of Biological SciencesWye College, University of LondonWye, Ashford, KentUK
  2. 2.Departamento de Botânica, Centro de Ciências BiológicasUniversidade Federal de Santa CatarinaSCBrazil

Personalised recommendations