Skip to main content

Numerical Solutions of Moving Boundary Problem with Thermal Convection in the Melt and Magnetic Field During Directional Solidification

Enthalpy-Porosity Method and Time Dependent Melt Effect on Interface Shape

  • Chapter
Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 51))

  • 385 Accesses

Abstract

An enthalpy-porosity method is extended to the simulation of crystal growth process via directional solidification. The approach is based on a homogeneous formulation for Navier Stokes and energy equations and involving a two-phases intermediate zone modelled as a porous medium, A finite volume approximation is used with a fixed mesh. The front capturing technique is validated with respect to an interface tracking method. The applications concern the interaction of steady and oscillatory melts with the interface during Bridgman crystal growth. The effect of an axial magnetic field is considered in steady case. The amplification of oscillatory instability in the melt is studied in the case of inverted Bridgman configuration (heated from below). Various solutions (steady symmetric and asymmetric, time-periodic, aperiodic …) are analyzed. Successive interfaces are considered over a characteristic growth time scale in order to exhibit some typical crystal constitution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. H. Meyer. Multidimensional Stefan Problem. J. Num. Anal 10(3), 522, 1973.

    Article  Google Scholar 

  2. P. Larroudé, J. Ouazzani, J.I.D. Alexander and P. Bontoux, Symmetry breaking flow transitions and oscillatory flows in a 2D directional solidification model, European Journal of Mechanics/B, 13(3), pages 353–381, 1994.

    Google Scholar 

  3. D. Morvan, M. El Ganaoui, and P. Bontoux. Application of porous medium approach for the resolution of solidification problems. Bulletin ERCOFTAC pages 49–52, 1996

    Google Scholar 

  4. D. Morvan, M. El Ganaoui, and P. Bontoux. Numerical simulation of 2D crystal growth problems in a vertical Bridgman-Stockbarger furnace, latent heat effects and crystal-melt in interface morphology. Int.J. Heat Mass Transfer in print, 1998.

    Google Scholar 

  5. El Ganaoui M., Bontoux P. et Morvan D. Une méthode de capture du front de changement de phase pour un problème de solidification dirigée C. R. Acad. Sciences Paris, en preparation 1998.

    Google Scholar 

  6. El Ganaoui M., Morvan D. and Bontoux P. Numerical simulation of solidification problems in material processing techniques. In 3rd International Conference Phenomena in Magnetohydrodynamic Electroconducting Flows, Septembre 1997 Aussois France, pp 343–349, 1997

    Google Scholar 

  7. D. Morvan, F. D. Cipriani and Ph. Bournot. Convection thermocapillaire au cours d’une operation de refusion-solidification par laser. Int. J. Heat Mass Transfer, 37(14): 1973–1983, 1994.

    Article  CAS  Google Scholar 

  8. W. D. Bennon and F.P. Incropera. A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems: 1 model formulation. Int. J. Heat Mass Transfer, 30(10):2161–2170, 1987. See also 30(10):2171–2187, 1987.

    Google Scholar 

  9. V. Voller and M. Cross. Accurate solutions of moving boundary problems using the enthalpy method. Int. J. Heat Mass Transfer, 24:545–556, 1980.

    Article  Google Scholar 

  10. I. J. Crank. Free and Moving Boundary Problems. Clarendon Press, Oxford, U. K., 1984.

    Google Scholar 

  11. F. P. Incropera, H.H. Engel, and W.D. Bennon. Numerical analysis of binary solid-liquid phase change with buoyancy and surface tension driven convection. Numerical Heat Transfer, Part A, 16:407–427, 1989.

    Article  Google Scholar 

  12. C. Beckermann and R. Viskanta. Double-diffusive convection during dendritic solidification of a binary mixture. Physico-Chemical Hydrodynamics, 10(2): 195–213, 1988.

    CAS  Google Scholar 

  13. D. S. Jang, R. Jetli, and S. Acharya. Comparison of the PISO, SIMPLER and SIMPLEC algoritms for the treatment of the pressure-velocity coupling in steady flow problems. Numerical Heat Transfer, 10:209–228, 1986.

    Article  Google Scholar 

  14. D. T. J. Hurle, Crystal Pulling from the Melt, Springer-Verlag Berlin Heidelberg (1993).

    Google Scholar 

  15. J. Chang and R.A. Brown. Radial segregation induced by natural convection and melt-solid interface shape in vertical bridgman growth. J. Crystal Growth, 63:343–364, 1983.

    Article  CAS  Google Scholar 

  16. W. E. Langlois, Ann. Rev. Fluid. Mech., 17, 191–215, (1985).

    Article  Google Scholar 

  17. I. V. Friazinov, M. P. Marchenko, O. S. Mazhorova. Transient simulation of crystal growth by Bridgman technique under normal and low gravitation. In Proceeding of International Aerospace Congress (IAC 94) August 1994, Moscow.

    Google Scholar 

  18. L. N. Hjellming, J.S. Walker, J. Fluid Mech. 164, 237, (1986).

    Article  Google Scholar 

  19. Jamgotchian Recherches sur l’influence de la convection naturelle sur la morphologie interfaciale lors de la solidification dirigée d’alliages binaries Phd thesis U Aix Marseille I, 1987.

    Google Scholar 

  20. M. El Ganaoui Modélisation de la convection instationnaire en présence d’un front de solidification déformable. Phd Thesis Universite de la Méditerranée Aix-Marseille 11 Octobre 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El Ganaoui, M., Bontoux, P., Morvan, D. (1999). Numerical Solutions of Moving Boundary Problem with Thermal Convection in the Melt and Magnetic Field During Directional Solidification. In: Alemany, A., Marty, P., Thibault, J.P. (eds) Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows. Fluid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4764-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4764-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6002-8

  • Online ISBN: 978-94-011-4764-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics