Skip to main content

Geodynamo and M.H.D

  • Chapter
  • 382 Accesses

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 51))

Abstract

The main part of the geomagnetic field is generated by self-induction in the Earth’s molten core. The geodynamo mechanism is not yet fully understood as an M.H.D. problem even though we have many constraints coming from observations, as well as from geophysical and geo-chemical theories. This Earth’s science problem combines many of the difficulties we face in physics (turbulence), in applied mathematics (nonlinear equations, boundary layers), in technology/engineering (liquid metal experiments) and in computing sciences (numerical modelling).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldridge, K. (1997) Perspectives on core dynamics from laboratory experiments Earth’s Deep Interior pp 65–78 Crossley, D.J. editor Gordon and Breach Science Publishers, Amsterdam.

    Google Scholar 

  • Aldridge, K.D., Toomre, J. (1969) Axisymmetric inertial oscillations of a fluid in a rotating spherical container J. Fluid Mech. Vol. 37 pp 307–323

    Article  Google Scholar 

  • Apel, A., Apstein, E., Rädler, K.-H., Rheinhardt, M. (1996) Contributions to the theory of the planned Karlsruhe dynamo experiment Report Astrophysikalisches Institut Postdam

    Google Scholar 

  • Ardes, M., Busse, F.H., Wicht, J. (1997) Thermal convection in rotating spherical shells Phys. Earth Planet. Inter. Vol. 99 pp 55–67.

    Article  Google Scholar 

  • Backus, G., Parker, R., Constable, C. (1996) Foundations of Geomagnetism Cambridge University Press.

    Google Scholar 

  • Braginsky, S.I., Meytlis, V.P. (1990) Local turbulence in the Earth’s core Geophys. Astrophys. Fluid Dynamics Vol. 55 pp 71–87.

    Article  Google Scholar 

  • Braginsky, S.I., Roberts, P.H. (1995) Equations governing convection in Earth’s core and the geodynamo Geophys. Astrophys. Fluid Dynamics Vol. 79 pp 1–97.

    Article  Google Scholar 

  • Brito, D., Cardin, P., Nataf, H.C., Marolleau, G. (1995) Experimental study of a geostrophic vortex of gallium in a transverse magnetic field (1995) Phys. Earth Planet. Inter. Vol. 91 pp 77–98.

    Article  CAS  Google Scholar 

  • Brito, D., Cardin, P., Nataf, H.C., Olson, P. (1996) Experiments on Joule Heating and the dissipation of energy in the Earth’s core (1996) Phys. Earth Planet. Inter. Vol. 91 pp 77–98.

    Article  Google Scholar 

  • Busse, F.H. (1970) Thermal instabilities in rapidly rotating systems J. Fluid Mech. Vol. 44 pp 441–460

    Article  Google Scholar 

  • Busse, F.H. (1975) A model of the Geodynamo Geophys. J. R. Astron. Soc. Vol. 42 pp 437–459.

    Article  Google Scholar 

  • Busse, F.H., Carrigan, C.R. (1976) Convection induced by centrifugal buoyancy I. Fluid Mech. Vol. 62 pp 579–592

    Article  Google Scholar 

  • Cardin, P., Olson, P. (1994) Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core Phys. Earth Planet. Inter. Vol. 82 pp 235–259.

    Article  Google Scholar 

  • Carrigan, C.R., Busse, F.H. (1983) An experimental and theoretical investigation of the onset of convection in rotating spherical shells J. Fluid Mech. Vol. 126 pp 287–305

    Article  Google Scholar 

  • Chamberlain, J.A., Carrigan, C.R. (1986) An experimental investigation of convection in a rotating sphere subject to time varying thermal boundary conditions Geophys. Astrophys. Fluid dynam. Vol. 41 pp 17–41

    Google Scholar 

  • Chandrasekhar, S. (1961) Hydrodynamic and hydromagnetic stability Oxford University Press.

    Google Scholar 

  • Cordero, S., Busse, F.H. (1992) Experiments on convection in rotating spherical shells Geophys. Res. Lett. Vol. 19 pp 733–736

    Article  Google Scholar 

  • Dormy, E. (1997) Modélisation numérique de la dynamo terrestre Thesis, Institut de Physique du Globe de Paris.

    Google Scholar 

  • Dormy, E., Cardin, P., Jault, D. (1998) MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field Earth Planet. Sci. Lett. Vol. 160 pp 15–30

    Article  CAS  Google Scholar 

  • Dudley, M.L., James, R.W. (1989) Time-dependent kinematic dynamos with stationary flows Proc. R. Soc. Lond. Vol. A 425 pp 407–429

    Google Scholar 

  • Fearn, D.R. (1979) Thermally driven hydromagnetic convection in a rapidly rotating sphere Proc. R. Soc. Lond. Vol. A 369 pp 227–242

    Google Scholar 

  • Fearn, D.R. (1997) The Geodynamo Earth’s Deep Interior pp 79–114 Crossley, D.J. editor Gordon and Breach Science Publishers, Amsterdam.

    Google Scholar 

  • Fearn, D.R., Roberts, P.H., Soward, A.M. (1988) Convection, stability and the dynamo Energy Stability and Convection Galdi, G.P., Straughan, B. editors Pitman Research notes in mathematics series 168 pp 60–324 Longman, Harlow.

    Google Scholar 

  • Gans, R.F. (1970) On hydromagnetic precession in a cylinder J. Fluid Mech. Vol. 45 pp 111–130

    Article  Google Scholar 

  • Glatzmaier, G.A., Olson, P. (1993) Highly supercritical thermal convection in a rotating spherical shell: centrifugal vs radial gravity Geophys. Astrophys. Fluid dynam. Vol. 70 pp 113–136

    Article  Google Scholar 

  • Glatzmaier, G.A., Roberts, P.H. (1995) A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle Phys. Earth Planet. Inter. Vol. 91 pp 63–73

    Article  Google Scholar 

  • Greenspan, H.P. (1968) The theory of rotating fluids Cambridge University Press

    Google Scholar 

  • Herzenberg, A. (1958) Geomagnetic dynamos Phil. Trans. R. Soc. Lond. Vol. A 250 pp 543–585

    Article  Google Scholar 

  • Herzenberg, A., Lowes, F.J. (1957) Electromagnetic induction in rotating conductors Phil. Trans. R. Soc. Lond. Vol. A 249 pp 507–584

    Article  Google Scholar 

  • Herzenberg, A., Lowes, F.J. (1957) Electromagnetic induction in rotating conductors Phil. Trans. R. Soc. Lond. Vol. A 249 pp 507–584

    Article  Google Scholar 

  • Hollerbach, R., Kerswell, R.R. (1995) Oscillatory internal shear layers in rotating and precessing flows J. Fluid Mech. Vol. 298 pp 327–339

    Article  Google Scholar 

  • Jault, D. (1995) Model Z by computation and Taylor’s condition Geophys. Astrophys. Fluid Dynamics Vol. 79 pp 99–124

    Article  Google Scholar 

  • Jault, D., Cardin, P. (1998) On dynamic geodynamo models with imposed velocity as energy source Phys. Earth Planet. Inter. submitted

    Google Scholar 

  • Kuang W., Bloxham, J. (1997) An Earth-like numerical dynamo model Nature Vol. 389 pp 371–374

    Article  CAS  Google Scholar 

  • Lowes, F.J., Wilkinson, I. (1968) Geomagnetic dynamo: an improved laboratory model Nature Vol. 219 pp 717–718

    Article  Google Scholar 

  • Malkus, W.V.R. (1968) Precession of the Earth as the cause of geomagnetism Science Vol. 160 pp 259–264

    Article  CAS  Google Scholar 

  • Merrill, R., McElhinny, M., McFadden, P. (1996) The magnetic field of the Earth Academic Press, New-York.

    Google Scholar 

  • Moffatt, H.K. (1978) Magnetic Field Generation in Electrically Conducting Fluids Cambridge University Press.

    Google Scholar 

  • Poirier, J.P. (1991) Introduction to Physics of the Earth’s Interiors Cambridge University Press.

    Google Scholar 

  • Proudman, I. (1956) The almost-rigid rotation of viscous fluid between concentric spheres J. Fluid Mech. Vol. 1 pp 505–516

    Article  Google Scholar 

  • Rädler, K.-H., Apstein, E., Rheinhardt, M., Schüler, M. (1997) Contributions to the theory of the planned Karlsruhe dynamo experiment-Supplements and Corrigenda-Report Astrophysikalisches Institut Postdam

    Google Scholar 

  • Roberts, P.H. (1987) Origin of the main field: Dynamics Geomagnetism 2. pp 251–306 Jacobs J. editor Academic Press, New-York

    Google Scholar 

  • Roberts, P.H., Soward, A.M. (1992) Dynamo theory Ann. Rev. Fluid Mech. Vol. 24 pp 459–512

    Article  Google Scholar 

  • Secco, R.A., Schloessin, H.H. (1989) The electrical resistivity of solid & liquid Fe at pressures up to 7. GPa J. Geophys. Res. Vol. 94 pp 5887–5894

    Article  Google Scholar 

  • Soward, A.M. (1979) Convection driven dynamos Phys. Earth Planet. Inter. Vol. 20 pp 134–151

    Article  Google Scholar 

  • Stewartson, K. (1966) On almost rigid rotations. Part 2 J. Fluid Mech. Vol. 26 pp 131–144

    Article  Google Scholar 

  • Taylor, J.B. (1963) The magneto-hydrodynamics of a rotating fluid and the earth’s dynamo problem Proc. R. Soc. Lond. Vol. A 274 pp 274–283

    Google Scholar 

  • Steenbeck, M., Kirko, I.M., Gailitis, A., Klawina, A.P., Krause, F., Laumanis, I.J., Lielausis, O.A. (1967) Der experimentelle Nachweis einer elektromotorischen Kraft längs eines äußeren Magnetfeldes, induziert durch eine Strömung flüssigen Metalls (α-effect) Monats. Dt. Akad. Wiss. Vol. 9 pp 714–719

    Google Scholar 

  • Vanyo, J., Wilde, P., Cardin, P., Olson, P. (1995) Experiments on precessing flows in the Earth’s liquid core Geophys. J. Int. Vol. 121 pp 136–142

    Article  Google Scholar 

  • Zhang, K. (1992) Spherical shell convection in the presence of a toroidal magnetic field Proc. R. Soc. Lond. Vol. A 448 pp 245–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jault, D., Cardin, P., Nataf, H.C. (1999). Geodynamo and M.H.D. In: Alemany, A., Marty, P., Thibault, J.P. (eds) Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows. Fluid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4764-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4764-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6002-8

  • Online ISBN: 978-94-011-4764-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics