Skip to main content

A Model of the Anode from the Chlorate Cell

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 51))

Abstract

This article presents a mathematical model that describes the physio-chemical properties of a chlorate cell. The chlorate cell involves the electrochemical evolution of a gas that impinges a large velocity on the electrolyte flowing between two participating electrodes that are only 3 mm apart. The model is written to take into account the diffusion, migration and convection transport mechanisms, of the electrolyte species, and assumes that the hydrodynamic flow is the laminar development of fluid between two parallel plates. The transport, of each of the species, and kinetic data, for all the chemical and electrochemical reactions and bireactions, are also involved in the model. Properties of the species are worked out with consideration to the high concentration and temperature of an electrolyte. The most important result from the model is the development of a diffusion layer of species along the height of the anode. This diffusion layer creates a substantial concentration overpotential, for chloride oxidation, especially at the top of the anode surface. This gives a non-uniform current density distribution on the anode that worsens as flow velocity decreases. Moreover, the model shows that the major bireaction is the production of oxygen from the electrochemical decay of hypochlorite and not from water splitting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ASHOUR, S. S., RINKER, E. B. and SANDELL, O. C. Absorption of chlorine into aqueous bicarbonate solutions and aqueous hydroxide solutions, AIChE Journal. 42 (1996) 671.

    Article  CAS  Google Scholar 

  • BEAL, M. G. Modern Chlor-alkali Technology. Vol 6, Chapl. The Royal Society of Chemistry, Cambridge, 1994.

    Google Scholar 

  • BECK, T. R. A contribution to the theory of electrolytic chlorate formation, Jnl. Electrochem. Soc. 116 (1969), 1038.

    Article  CAS  Google Scholar 

  • BOXALL, C. and KELSALL, G. H. Hypochlorite electrogeneration. II: Thermodynamics and kinetic model of the anode reaction layer, ICHEME Symposium series nr 127 (1992) 59.

    Google Scholar 

  • BRADLEY, F., LEDER, A. and SASANO, T. CEH Product Review. Chemical Economics Handbook, SRI International, 1990.

    Google Scholar 

  • CHAO, M. S. The diffusion coefficient of hypochlorite, hypochlorous acid and chlorine in aqueous media by chronophotography, Jnl. Electrochem. Soc. 115 (1968), 1172.

    Article  CAS  Google Scholar 

  • DEAN, J.A. Lange’s Handbook of Chemistry. 14th. Ed. McGraw-Hill (1992). 6–69.

    Google Scholar 

  • DESPIC, A. R. JAKSIC, M. M. and NIKOLIC, B. Z. The of kinetic and hydrodynamic factors on current efficiency in the chlorate cell process, Jnl. Appl. Electrochem. 2 (1972), 337.

    Article  CAS  Google Scholar 

  • FOERSTER, F. The electrolysis of hypochlorite solutions, Trans. Am Electrochem. Soc. 46 (1924), 23.

    Google Scholar 

  • HARDEE, K. L. and MITCHELL, L. K. The influence of electrolyte parameters on the percent oxygen evolved from a chlorate cell, Jnl. Electrochem. Soc. 136 (1989), 3314.

    Article  CAS  Google Scholar 

  • HEAL, G. R., KUHN, A. T. and LARTEY, R. B. A parametric study and computer-based simulation of an undivided sodium hypochlorite electrolyzer, Jnl. Electrochem. Soc. 124 (1977), 1690.

    Article  CAS  Google Scholar 

  • IBL, N. and LANDOLT, D. On the mechanism of anodic chlorate formation in dilute NaCl solutions, Jnl. Electrochem. Soc. 115 (1968), 713.

    Article  CAS  Google Scholar 

  • IBL, N. and VENCZEL, J. Unterscung des stofftransports an gasentwickelnden elektroden, Met. Oberfläche. 24 (1970), 365.

    Google Scholar 

  • JAKSIC, M. M., NIKOLIC, B. Z., CSONKA, I. M. and DJORDJEVIC, A. B. Studies on the chlorate cell process. IV: Effect of neutral salts on conversion of available chlorine to chlorate, Jnl. Electrochem. Soc. 116 (1969), 684.

    Article  CAS  Google Scholar 

  • JAKSIC, M. M., DESPIC, A. R., CSONKA, I. M. and NIKOLIC, B. Z. Studies on the chlorate cell process. V: Theory and practice of a modified technology for electrolytic chlorate production, Jnl. Electrochem. Soc. 116 (1969), 1316.

    Article  Google Scholar 

  • JAKSIC, M. M. Mutual effect of current density, pH, temperature, and hydrodynamic factors on current efficiency in the chlorate cell process, Jnl. Electrochem. Soc. 121 (1974), 70.

    Article  CAS  Google Scholar 

  • JAKSIC, M. M. Mass transfer and optimisation of Faradaic yields in a chlorate cell process. Electrochim. Acta 21 (1976), 1127.

    Article  CAS  Google Scholar 

  • KOTOWSKI, S. and BUSSE, B. Modern Chlor-alkali Technology. Vol 3, Chapl. Ellis Horwood Ltd, Chichester (1986)

    Google Scholar 

  • LANDOLT, D. and IBL, N. On the mechanism of anodic chlorate formation in concentrated NaCl solutions, Electrochim. Acta 15 (1970), 1165.

    Article  CAS  Google Scholar 

  • LISTER, M. W. Decomposition of sodium hypochlorite: the catalysed reaction, Can. Jnl. of Chem. 34 (1956), 479.

    Article  CAS  Google Scholar 

  • MOORE, W. J. Basic Physical Chemistry. 1st. Ed., Prentice-Hall Int. Inc. (1986) 370.

    Google Scholar 

  • NEWMAN, J. S. Electrochemical Systems. 2nd Ed. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1991.

    Google Scholar 

  • OLOFFSON, G. and HEPLER, L. G. Thermodynamics of ionization of water over wide ranges of temperature and pressure, J. Soln. Chem. 4 (1975) 127.

    Article  Google Scholar 

  • PETERS, G. Undergraduate thesis Kungl Tekniska Högskolan, Stockholm, Avdelningen för Tillämpad Elektrokemi (1993).

    Google Scholar 

  • ROUSAR, I. Calculation of current density distribution and terminal voltage for bipolar electrolyzers; application to chlorate cells, Jnl. Electrochem. Soc. 116 (1969), 676.

    Article  CAS  Google Scholar 

  • SCHLICHTING, H. Boundary Layer Theory. 4th. Ed. McGraw-Hill, 1960.

    Google Scholar 

  • SPALDING, C. W. Reaction kinetics in the absorption of chlorine into aqueous media, A. I. Ch. E. Jnl. 8(1962) 685.

    Google Scholar 

  • VENCZEL, J. PhD Thesis ETH, Zurich, Prom nr 3673, (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Byrne, P., Simonsson, D., Fontes, E., Lucor, D. (1999). A Model of the Anode from the Chlorate Cell. In: Alemany, A., Marty, P., Thibault, J.P. (eds) Transfer Phenomena in Magnetohydrodynamic and Electroconducting Flows. Fluid Mechanics and Its Applications, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4764-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4764-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6002-8

  • Online ISBN: 978-94-011-4764-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics