Skip to main content

The Cosmic-Ray Isotope Spectrometer for the Advanced Composition Explorer

  • Chapter
Book cover The Advanced Composition Explorer Mission

Abstract

The Cosmic-Ray Isotope Spectrometer is designed to cover the highest decade of the Advanced Composition Explorer’s energy interval, from ∼50 to ∼500 MeV nucl-1, with isotopic resolution for elements from Z ≃ 2 to Z ≃ 30. The nuclei detected in this energy interval are predominantly cosmic rays originating in our Galaxy. This sample of galactic matter can be used to investigate the nucleosynthesis of the parent material, as well as fractionation, acceleration, and transport processes that these particles undergo in the Galaxy and in the interplanetary medium.

Charge and mass identification with CRIS is based on multiple measurements of dE/dx and total energy in stacks of silicon detectors, and trajectory measurements in a scintillating optical fiber trajectory (SOFT) hodoscope. The instrument has a geometrical factor of ∼r250 cm2 sr for isotope measurements, and should accumulate ∼ 5 × 106 stopping heavy nuclei (Z > 2) in two years of data collection under solar minimum conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlen, S. P.: 1980, ‘Theoretical and Experimental Aspects of the Energy Loss of Relativistic Heavily Ionizing Particles’, Rev. Mod. Phys. 52, 121–173.

    Article  ADS  Google Scholar 

  • Allbritton, G. A., Andersen, H., Barnes, A., Christian, E. R., Cummings, A. C., Dougherty, B. L., Jensen, L., Lee, J., Leske, R. A., Madden, M. P., Mewaldt, R., Milliken, B., Nahory, B. W., O’Donnell, R., Schmidt, P., Sears, B. R., von Rosenvinge, T. T., Walton, J. T., Wiedenbeck, M. E., and Wong, Y. K.: 1996, ‘Large-Diameter Lithium Compensated Silicon Detectors for the NASA Advanced Composition Explorer (ACE) Mission’, IEEE Trans. Nucl. Sci. 43, 1505–1509.

    Article  ADS  Google Scholar 

  • Althouse, W E., Cummings, A. C., Garrard, T. L., Mewaldt, R. A., Stone, E. C., and Vogt, R. E.: 1978, ‘A Cosmic Ray Isotope Spectrometer’, IEEE Trans. Geosci. Electronics GE-16, 204–207.

    Article  ADS  Google Scholar 

  • Barnett, R. M. et al.: 1996, ‘Review of Particle Properties’, Phys. Rev. D54, 1.

    ADS  Google Scholar 

  • Berezinskiĭ, V. S., Bulanov, S. V., Dogiel, V. A., Ginzburg, V. L., and Ptuskin, V. S.: 1990, The Astrophysics of Cosmic Rays, North-Holland, Amsterdam.

    Google Scholar 

  • Breneman, H. H. and Stone, E. C.: 1985, ‘Solar Coronal and Photospheric Abundances from Solar Energetic Particle Measurements’, Astrophys. J. 199, L51–L61.

    Google Scholar 

  • Cassé, M. and Paul, J. A.: 1982, ‘On The Stellar Origin of the 22Ne Excess in Cosmic Rays’, Astrophys. J. 258, 860–863.

    Article  ADS  Google Scholar 

  • Connell, J. J. and Simpson, J. A.: 1995, ‘The Ulysses Cosmic Ray Isotope Experiment: Isotopic Abundances of Fe and Ni from High Resolution Measurements’, Proc. 24th Int. Cosmic Ray Conf., Rome 2, 602–605.

    Google Scholar 

  • Connell, J. J. and Simpson, J. A.: 1997a, ‘High Resolution Measurements of the Isotopic Composition of Galactic Cosmic Ray C., N, O, Ne, Mg, and Si from the Ulysses HET’, Proc. 25th Int. Cosmic Ray Conf., Durban 3, 381–384.

    Google Scholar 

  • Connell, J. J. and Simpson, J. A.: 1997b, ‘26A1 in the Galactic Cosmic Radiation: Measurements with the Ulysses HET Instrument’, Proc. 25th Int. Cosmic Ray Conf, Durban 3, 393–396.

    Google Scholar 

  • Cook, W. R., Cummings, A., Kecman, B., Mewaldt, R. A., Aalami, D., Kleinfelder, S. A., and Marshall, J. H.: 1993a, in B. Tsuratani (ed.), ‘Custom Analog VLSI for the Advanced Composition Explorer’, Small Instruments Workshop Proc., Pasadena, Jet Propulsion Laboratory.

    Google Scholar 

  • Cook, W. R., Cummings, A. C., Cummings, J. R., Garrard, T. L., Kecman, B., Mewaldt, R. A., Selesnick, R. S., Stone, E. C., and von Rosenvinge, T. T.: 1993b, ‘MAST: A Mass Spectrometer Telescope for Studies of the Isotopic Composition of Solar, Anomalous, and Galactic Cosmic Ray Nuclei’, IEEE. Trans. Geosci. Remote Sensing 31, 557–564.

    Article  ADS  Google Scholar 

  • Crary, D. J., Binns, W. R., Cummings, A. C., Klarmann, J., Lawrence, D. J., and Mewaldt, R. A.: 1992, ‘A Bevalac Calibration of a Scintillating Optical Fiber Hodoscope’, Nucl. Inst. Meth. A316, 311–317.

    ADS  Google Scholar 

  • Davis, A. J., Hink, P. L., Binns, W. R., Epstein, J. W, Connell, J. J., Israel, M. H., Klarmann, J., Vylet, V., Kaplan, D. H., and Ruecroft, S.: 1989, ‘Scintillating Optical Fiber Trajectory Detectors’, Nucl. Inst. Meth. A276, 347–358.

    ADS  Google Scholar 

  • Dougherty, B. L., Christian, E. R., Cummings, A. C., Leske, R. A., Mewaldt, R. A., Milliken, B. D., von Rosenvinge, T. T., and Wiedenbeck, M. E.: 1996, in B. A. Ramsey and T. A. Parnell (eds.), ‘Characterization of Large-Area Silicon Ionization Detectors for the ACE Mission’, Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions, Proc. SPIE 2806, Society of Photo-Optical Instrumentation Engineers, Denver, pp. 188–198.

    Google Scholar 

  • DuVernois, M. A. and Thayer, M. R.: 1996, ‘The Elemental Composition of the Galactic Cosmic-Ray Source: Ulysses High-Energy Telescope Results’, Astrophys. J. 465, 982–984.

    Article  ADS  Google Scholar 

  • DuVernois, M. A., Garcia-Muñoz, M., Pyle, K. R., Simpson, J. A., and Thayer, M. R.: 1996, ‘The Isotopic Composition of Galactic Cosmic-Ray Elements from Carbon to Silicon: the Combined Release and Radiation Effects Satellite Investigation’, Astrophys. J. 466, 457–472.

    Article  ADS  Google Scholar 

  • Ellison, D. C., Drury, L. O’C, and Meyer, J.-R: 1998, ‘Cosmic Rays from Supernova Remnants: A Brief Description of the Shock Acceleration of Gas and Dust’, Space Sci. Rev. 86, 203.

    Article  ADS  Google Scholar 

  • Engelmann, J. J., Ferrando, P., Soutoul, A., Goret, P., Juliusson, E., Koch-Miramond, L., Lund, N., Masse, P., Peters, B., Petrou, N., and Rasmussen, I. L.: 1990, ‘Charge Composition and Energy Spectra of Cosmic-Ray Nuclei for Elements from Be to Ni. Results from HEAO-3-C2’, Astron. Astrophys. 233, 96–111.

    ADS  Google Scholar 

  • Fisher, A. J., Hagen, F. A., Maehl, R. C., Ormes, J. F., and Arens, J. E: 1976, ‘The Isotopic Composition of Cosmic Rays with 5 ≤ Z ≤ 26’, Astrophys. J. 205, 938–946.

    Article  ADS  Google Scholar 

  • Garcia-Munoz, M., Mason, G. M., and Simpson, J. A.: 1977, ‘The Isotopic Composition of Galactic Cosmic Ray Lithium, Beryllium, and Boron’, Proc. 15th Int. Cosmic Ray Conf., Plovdiv 1, 301–306.

    Google Scholar 

  • Halpern, E. and Marshall, J. H.: 1968, ‘A High Resolution Gamma-Ray Spectrometer for Use in Outer Space’, IEEE Trans. Nucl. Sci. NS-15, 242–251.

    ADS  Google Scholar 

  • Halpern, E., Marshall, J. H., and Weeks, D.: 1968, ‘A Gamma-Ray Spectrometer for Space Applications’, Nucleonics in Aerospace, Plenum Press, New York, pp. 98–106.

    Google Scholar 

  • Harrington, T. M. and Marshall, J. H.: 1968, ‘A Pulse-Height Analyzer for Charged Particle Spectroscopy on the Lunar Surface’, Rev. Sci. Instr. 39, 184–194.

    Article  ADS  Google Scholar 

  • Harrington, T. M. and Marshall, J. H.: 1969, ‘An Electronics System for Gamma-Ray Spectrometry in Space Applications’, IEEE Trans. Nucl. Sci. NS-16, 314–321.

    Article  ADS  Google Scholar 

  • Harrington, T.M., Marshall, J.H., Arnold, J.R., Peterson, L.E., Trombka, J.I., and Metzger, A.E.: 1974, ‘The Apollo Gamma-Ray Spectrometer’, Nucl. Instr. Meth. 118, 401–411.

    Article  Google Scholar 

  • Hink, P. L., Binns, W. R., Klarmann, J., and Olevitch, M. A.: 1996, ‘The ACE-CRIS Scintillating Optical Fiber Trajectory (SOFT) Detector: A Calibration at the NSCL’, in B. A. Ramsey and T. A. Parnell (eds.), Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions, Proc. SPIE 2806, Society of Photo-Optical Instrumentation Engineers, Denver, pp. 199–208.

    Google Scholar 

  • Hubert, F., Bimbot, R., and Gauvin, H.: 1990, ‘Range and Stopping-Power Tables for 2.5–500 MeV/Nucleon Heavy Ions In Solids’, Atom. Dat. Nucl. Dat. Tables 46, 1–213.

    Article  ADS  Google Scholar 

  • Leske, R. A.: 1993, ‘The Elemental and Isotopic Composition of Galactic Cosmic-Ray Nuclei from Scandium through Nickel’, Astrophys. J. 405, 567–583.

    Article  ADS  Google Scholar 

  • Leske, R. A. and Wiedenbeck, M. E.: 1993, ‘Composition Measurements from ISEE-3: Fluorine through Calcium’, Proc. 23rd Int. Cosmic Ray Conf., Calgary 1, 571–574.

    Google Scholar 

  • Letaw, J. R., Adams, J. H., Silberberg, R., and Tsao, C. H.: 1985, ‘Electron-Capture Decay of Cosmic Rays’, Astrophys. Space Sci. 114, 365–379.

    Article  ADS  Google Scholar 

  • Letaw, J. R., Silberberg, R., and Tsao, C. H.: 1993, ‘Comparison of Distributed Reacceleration and Leaky-Box Models of Cosmic-Ray Abundances (3 ≤ Z ≤ 28)’, Astrophys. J. 414, 601–611.

    Article  ADS  Google Scholar 

  • Lukasiak, A., McDonald, F. B., and Webber, W. R.: 1997, ‘Study of Elemental and Isotopic Composition of Cosmic Ray Nuclei Ca, Ti, V., Cr, Mn and Fe’, Proc. 25th Int. Cosmic Ray Conf., Durban 3, 357–360.

    Google Scholar 

  • Lund, N.: 1989, in C. J. Waddington (ed.), ‘The Abundances in the Cosmic Radiation (The Elements Lighter than Ge)’, Proceedings of the Symposium on Cosmic Abundances of Matter, AIP Conf. Proc. 183, American Institute of Physics Press, Minneapolis, pp. 111–123.

    Google Scholar 

  • Mewaldt, R. A.: 1989, in C. J. Waddington (ed.), ‘The Abundances of Isotopes in the Cosmic Radiation’, Proceedings of the Symposium on Cosmic Abundances of Matter, AIP Conf. Proc. 183, American Institute of Physics Press, Minneapolis, pp. 124–146.

    Google Scholar 

  • Meyer, J.-P: 1985, ‘Solar-Stellar Outer Atmospheres and Energetic Particles, and Galactic Cosmic Rays’, Astrophys. J. Suppl. 57, 173–204.

    Article  ADS  Google Scholar 

  • Meyer, J.-P, Drury, L. O’C, and Ellison, D. C.: 1998, ‘A Cosmic Ray Composition Controlled by Volatility and A/Q Ratio. SNR Shock Acceleration of Gas and Dust’, Space Sci. Rev. 86, 179.

    Article  ADS  Google Scholar 

  • Payne, M. G.: 1969, ‘Energy Straggling of Heavy Charged Particles in Thick Absorbers’, Phys. Rev. 185, 611–623.

    Article  ADS  Google Scholar 

  • Ptuskin, V. and Soutoul, A.: 1998, ‘Cosmic Ray Clocks’, Space Sci. Rev. 86, 225.

    Article  ADS  Google Scholar 

  • Rossi, B.: 1952, High-Energy Particles, Prentice-Hall, Englewood Cliffs, p. 31.

    Google Scholar 

  • Soutoul, A., Cassé, M., and Juliusson, E.: 1978, ‘Time Delay Between the Nucleosynthesis of Cosmic Rays and Their Acceleration to Relativistic Energies’, Astrophys. J. 219, 753–755.

    Article  ADS  Google Scholar 

  • Stone, E. C.: 1989, in C. J. Waddington (ed.), ‘Solar Abundances as Derived from Solar Energetic Particles’, Proceedings of the Symposium on Cosmic Abundances of Matter, AIP Conf. Proc. 183, American Institute of Physics Press, Minneapolis, pp. 72–90.

    Google Scholar 

  • Stone, E. C. and Wiedenbeck, M. E.: 1979, ‘A Secondary Tracer Approach to the Derivation of Galactic Cosmic Ray Source Isotopic Abundances’, Astrophys. J. 231, 606–623.

    Article  ADS  Google Scholar 

  • Stone, E. C., Cohen, C. M. S., Cook, W. R., Cummings, A. C., Gauld, B., Kecman, B., Leske, R. A., Mewaldt, R. A., Thayer, M. R., Dougherty, B. L., Grumm, R. L., Milliken, B. D., Radocinski, R. G., Wiedenbeck, M. E., Christian, E. R., Shuman, S., von Rosenvinge, T. T.: 1998: ‘The Solar Isotope Spectrometer for the Advanced Composition Explorer’, Space Sci. Rev. 86, 357.

    Article  ADS  Google Scholar 

  • Thayer, M. R.: 1997, ‘An Investigation into Sulfur Isotopes in the Galactic Cosmic Rays’, Astrophys. J. 482, 792–795.

    Article  ADS  Google Scholar 

  • Webber, W. R., Lukasiak, A., McDonald, F. B., and Ferrando, P.: 1996, ‘New High-Statistical-High-Resolution Measurements of the Cosmic-Ray CNO Isotopes from a 17-Year Study Using the Voyager 1 and 2 Spacecraft’, Astrophys. J. 457, 435–439.

    Article  ADS  Google Scholar 

  • Webber, W.R., Lukasiak, A., and McDonald, F. B.: 1997, ‘Voyager Measurements of the Mass Composition of Cosmic-Ray Ne, Mg, Si, and S Isotopes’, Astrophys. J. 476, 766–770.

    Article  ADS  Google Scholar 

  • Wiedenbeck, M. E. and Greiner, D. E.: 1980, ‘A Cosmic-Ray Age Based on the Abundance of 10Be’, Astrophys. J. 239, L139–L142.

    Article  ADS  Google Scholar 

  • Zaerpoor, K., Chan, Y. D., DiGregorio, D. E., Dragowsky, M. R., Hindi, M. M., Isaac, M. C. P., Krane, K. S., Larimer, R. M., Macciavelli, A. O., Macleod, R. W., Miocinovic, P., and Norman, E. B.: 1997, ‘Galactic Confinement Time of Iron-Group Cosmic Rays Derived from the 54Mn Chronometer’, Phys. Rev. Letters 79, 4306–4309.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Stone, E.C. et al. (1998). The Cosmic-Ray Isotope Spectrometer for the Advanced Composition Explorer. In: Russell, C.T., Mewaldt, R.A., Von Rosenvinge, T.T. (eds) The Advanced Composition Explorer Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4762-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4762-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6001-1

  • Online ISBN: 978-94-011-4762-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics