Skip to main content

Cosmic Rays from Supernova Remnants: A Brief Description of the Shock Acceleration of Gas and Dust

  • Chapter
The Advanced Composition Explorer Mission

Abstract

We summarize our model of galactic cosmic-ray (GCR) origin and acceleration, wherein a mixture of interstellar and/or circumstellar gas and dust is accelerated by a supernova remnant (SNR) blast wave. A detailed analysis of observed GCR abundances (Meyer et al, 1997), combined with the knowledge that many refractory elements known to be locked in grains in the interstellar medium (ISM) are abundant in cosmic rays, has lead us to revive an old suggestion (Epstein, 1980) that charged dust grains can be shock accelerated. Here, we outline results (presented more completely in Ellison et al., 1997) from a nonlinear shock model which includes (i) the direct acceleration of interstellar gas-phase ions, (ii) a simplified model for the direct acceleration of weakly charged grains to ∼ 100 keV amu-1 energies, simultaneously with the acceleration of the gas ions, (iii) the energy losses of grains colliding with the ambient gas, (iv) the sputtering of grains, and (v) the simultaneous acceleration of the sputtered ions to TeV energies. We show that the model produces GCR source abundance enhancements of the volatile, gas-phase elements, which are an increasing function of mass, as well as a net, mass independent, enhancement of the refractory, grain elements over protons, consistent with cosmic-ray observations. The GCR 22Ne and C excesses may also be accounted for in terms of the acceleration of 22Ne-C-enriched pre-SN Wolf-Rayet star wind material surrounding the most massive supernovae. The O excess seen in cosmic rays probably cannot be interpreted in terms of W-R star nucleosynthesis, but is easily accounted for in our model since 15 to 20% of O is trapped in grain cores and this O will be preferentially accelerated. We have expanded the parameter range explored in Ellison et al. (1997) to lower shock speeds and higher maximum cosmic-ray energies and find similar fits to the H/He ratio and the cosmic-ray source spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berezhko, E. G. and Krymsky, G. F.: 1988, Usp. Fiz. Nauk 154, 49 (English translation, Soviet Phys. Usp. 31, 27).

    Article  ADS  Google Scholar 

  • Berezhko, E. G., Elshin, V. K., and Ksenofontov, L. T.: 1996, JETP 82, 1.

    ADS  Google Scholar 

  • Blandford, R. D. and Eichler, D.: 1987, Physics Reports 154, 1.

    Article  ADS  Google Scholar 

  • Bode, M. R: 1988, in M. E. Bailey and D. A. Williams (eds.), Dust in the Universe, Cambridge University Press, Cambridge, p. 73.

    Google Scholar 

  • Cardelli, J. A.: 1994, Science 265, 209.

    Article  ADS  Google Scholar 

  • Cummings, A. C. and Stone, E. C.: 1996, Space Sci. Rev. 78, 117.

    Article  ADS  Google Scholar 

  • Drury, L. O’C: 1983, Rep. Prog. Phys. 46, 973.

    Article  ADS  Google Scholar 

  • Drury, L. O’C, Aharonian, F. A., and Völk, H. J.: 1994, Astron. Astrophys. 287, 959.

    ADS  Google Scholar 

  • Dwek, E.: 1987, Astrophys. J. 322, 812.

    Article  ADS  Google Scholar 

  • Dwek, E., Moseley, S. H., Glaccum, W., Graham, J. R., Loewenstein, R. F., Silverberg, R. F., and Smith, R. K.: 1992, Astrophys. J. 389, L21.

    Article  ADS  Google Scholar 

  • Eichler, D.: 1979, Astrophys. J. 232, 106.

    Article  ADS  Google Scholar 

  • Eichler, D.: 1984, Astrophys. J. 277, 429.

    Article  ADS  Google Scholar 

  • Ellison, D. C.: 1981, Ph.D. Thesis, The Catholic University of America.

    Google Scholar 

  • Ellison, D. C. and Eichler, D.: 1984, Astrophys. J. 286, 691.

    Article  ADS  Google Scholar 

  • Ellison, D. C., Drury, L. O’C., and Meyer, J. P.: 1997, Astrophys. J., in press.

    Google Scholar 

  • Ellison, D. C., Jones, R C., and Reynolds, S. P.: 1990, Astrophys. J. 360, 702.

    Article  ADS  Google Scholar 

  • Engelmann, J. J., Ferrando, P., Soutoul, A., Goret, P., Juliusson, E., Koch-Miramond, L., Lund, N., Masse, P., Peters, B., Petrou, N., and Rasmussen, I. L.: 1990, Astron. Astrophys. 233, 96.

    ADS  Google Scholar 

  • Epstein, R. I.: 1980, Monthly Notices Royal Astron. Soc. 193, 723.

    ADS  Google Scholar 

  • Gehrz, R. D.: 1991, in L. J. Allamandola and A. G. G. M. Tielens (eds.), ‘Interstellar Dust’, IAU Symp. 135, 445.

    ADS  Google Scholar 

  • Jones, F. C. and Ellison, D. C.: 1991, Space Sci. Rev. 58, 259.

    Article  ADS  Google Scholar 

  • Lagage, P. O. and Cesarsky, C. J.: 1983, Astron. Astrophys. J. 125, 249.

    ADS  MATH  Google Scholar 

  • Lucy, L. B., Danziger, I. J., Gouiffes, C., and Bouchet, P.: 1989, in S. E. Woosley (ed.), Supernovae, Springer-Verlag, New York, p. 82.

    Google Scholar 

  • Lucy, L. B., Danziger, I. J., Gouiffes, C., and Bouchet, P.: 1991, in G. Tenorio-Tagle, M. Moles, and J. Melnick (eds.), ‘Structure and Dynamics of the Interstellar Medium’, IAU Colloq. 120, 164.

    ADS  Google Scholar 

  • Mathis, J. S., Rumpl, W., and Nordsieck, K. H.: 1977, Astrophys. J. 217, 425.

    Article  ADS  Google Scholar 

  • Meyer, J. P., Drury, L. O’C, and Ellison, D. C.: 1997, Astrophys. J., in press.

    Google Scholar 

  • Prishchep, V. L. and Ptuskin, V.S.: 1981, Astron. Zh. 58, 779 (English translation Soviet Astron. 25, 446).

    ADS  MATH  Google Scholar 

  • Reynolds, S. P. 1988, in G. L. Verschuur and K. I. Kellermann (eds.), Galactic and Extragalactic Radio Astronomy, Springer-Verlag, Berlin, p. 439.

    Chapter  Google Scholar 

  • Savage, B. D. and Sembach, K. R.: 1996, Ann. Rev. Astron. Astrophys., in press.

    Google Scholar 

  • Sembach, K. R. and Savage, B. D.: 1996, Astrophys. J. 457, 211.

    Article  ADS  Google Scholar 

  • Shibata, T.: 1995, 24th Int. Cosmic Ray Conf., Rome, Invited, Rapporteurs and Highlight Papers, p. 713.

    Google Scholar 

  • Van der Hucht, K. A. and Hidayat, B. (eds.): 1991, ‘Wolf-Rayet Stars and Interrelations with Other Massive Stars in the Galaxy’, IAU Symp. 143.

    Google Scholar 

  • Van der Hucht, K. A. and Williams, P. M. (eds.): 1995, ‘Wolf-Rayet Stars: Binaries, Colliding Winds, Evolution’, IAU Symp. 163.

    Google Scholar 

  • Völk, H. J.: 1984, in Tran Than Van (ed.), High Energy Astrophysics, Proc. 19th Rencontre de Moriond, Editions Frontières, Gif-sur-Yvette, p. 281.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ellison, D.C., Drury, L.O., Meyer, JP. (1998). Cosmic Rays from Supernova Remnants: A Brief Description of the Shock Acceleration of Gas and Dust. In: Russell, C.T., Mewaldt, R.A., Von Rosenvinge, T.T. (eds) The Advanced Composition Explorer Mission. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4762-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4762-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6001-1

  • Online ISBN: 978-94-011-4762-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics