Skip to main content

Black Holes and D-Branes

  • Chapter
Strings, Branes and Dualities

Part of the book series: NATO ASI Series ((ASIC,volume 520))

  • 362 Accesses

Abstract

Under a wide variety of conditions General Relativity predicts that singularities will develop [1]. The cosmic censorship hypothesis states that under generic physical situations leading to gravitational collapse the resulting singularities will be covered by an event horizon [2]. This conjecture has not been yet proved but there exists great evidence that it is correct [3]. The area of the horizon is an interesting quantity since it always increases upon classical evolution [4], this looks very similar to the second law of thermodynamics. The analogy became more precise when Hawking showed [5] that quantum mechanics implies that black holes emit thermal radiation with a temperature obeying the first law of thermodynamics dM = T H dS, where the entropy is \(S = {{{A_H}} \over {4{G_N}\hbar }}\) [6], M is the black hole mass and A H is the horizon area (from now on we set ħ = 1 but keep G N ≠ 1). The area increase law becomes the second law of thermodynamics. If one includes Hawking radiation, the black hole mass decreases and so does the area of the horizon, but the total entropy, defined as S = A H /4G N + S rad , increases. For any physical system we expect that the entropy is the logarithm of the number of states with given macroscopic properties, like the mass, charge, angular momentum, etc. It has been a longstanding puzzle to find the degrees of freedom that give rise to this entropy. It seems clear that some quantum gravity will be necessary to describe the microstates. String theory [7] is a theory of quantum gravity so one would naturally expect that it should give an answer to this question. But string theory is defined perturbatively and black holes involve strong interactions due to their large mass.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Hawking and G. Ellis, The Large Scale Structure of Spacetime, Cambridge Univ. Press, 1973.

    Google Scholar 

  2. R. Penrose, Phys. Rev. Lett. 14 (1965) 57. R. Penrose, “Singularities and Time Asymmetry” and R. Geroch and G. Horowitz “Global Structure of Spacetimes”, both in General Relativity, an Einstein Centenary Survey, ed. S. Hawking and W. Israel (Cambridge University Press) (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. R. Wald, Talk at the American Physical Society meeting, Washington, April 1996.

    Google Scholar 

  4. S. Hawking, Phys. Rev. Lett. 26 (1971) 1344.

    Article  ADS  Google Scholar 

  5. S.W. Hawking, Comm. Math. Phys. 43 (1975) 199.

    Article  MathSciNet  ADS  Google Scholar 

  6. J. Bekenstein, Phys. Rev. D7 (1973) 2333; Phys. Rev. D 9 (1974) 3292; S. W. Hawking, Phys. Rev. D13 (1976) 191.

    MathSciNet  ADS  Google Scholar 

  7. For some reviews see: M. Green, J. Schwarz, and E. Witten, “Superstring Theory,“ two volumes (Cambridge University Press, 1987); A.M. Polyakov, “Gauge Fields and Strings,“ (Harwood, 1987); M. Kaku, “Introduction to Superstrings,“ (Springer-Verlag, 1988); D. Lust and S. Theisen, “Lectures on String Theory,“ (Springer-Verlag, 1989).

    Google Scholar 

  8. J. Polchinski, Phys. Rev. Lett 75 (1995) 4724

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. hep-th/9510017; J. Dai, R. Leigh and J. Polchinski, Mod. Phys. Lett. A 4 (1989) 2073; P. Horava, Phys. Lett. B231 (1989) 251.

    MathSciNet  ADS  Google Scholar 

  10. A. Strominger and C. Vafa, Phys. Lett. B379 (1996) 99, hep-th/9601029.

    MathSciNet  ADS  Google Scholar 

  11. L. Susskind, RU-93-44, hep-th/9309145

    Google Scholar 

  12. A. Sen, Mod. Phys. Lett. A10 (1995) 2081, hep-th/9504147.

    ADS  Google Scholar 

  13. G. Horowitz and J. Polchinski, hep-th/9612146.

    Google Scholar 

  14. G. Horowitz, gr-qc/9704072; gr-qc/9604051.

    Google Scholar 

  15. D. Youm, hep-th/9710046, to appear in Phys. Rep..

    Google Scholar 

  16. A. Peet, hep-th/9712253.

    Google Scholar 

  17. T. Banks, W. Fischler, S. H. Shenker, L. Susskind, Phys.Rev. D55 (1997) 5112, hep-th/9610043.

    MathSciNet  ADS  Google Scholar 

  18. T. Banks, W. Fischler, L.R. Klebanov and L. Susskind Phys. Rev. Lett. 80 (1998) 226, hep-th/9709091; hep-th/9711005; I. Klebanov and L. Susskind, hep-th/9709108;G. Horowitz and E. Martinec, hep-th/9710217; M. Li hep-th/9710226; S. Das, S. Mathur, S. Kalyana Rama and P. Ramadevi, hep-th/9711003; H. Liu and A.A. Tseytlin, hep-th/9712063; T. Banks, W. Fischler and I.R. Klebanov, hep-th/9712236; F. Englert and E. Rabinovici, hep-th/9801048; M. Li and E. Martinec hep-th/9801070.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. S. Hyun, hep-th/9704005.

    Google Scholar 

  20. H. Boonstra, B. Peeters and K. Skenderis, Phys. Lett. B411 (1997) 59, hep-th/9706192.

    MathSciNet  ADS  Google Scholar 

  21. M. Banados, C. Teitelboim and J. Zanelli Phys. Rev. Lett. 69 (1992) 1849, hep-th/9204099.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. C. Hull and P. Townsend, Nucl. Phys. B438 (1995) 109, hep-th/9410167.

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Tseytlin, Mod. Phys. Lett. A11 (1996) 689, hep-th/9601177.

    MathSciNet  ADS  Google Scholar 

  24. M. Cvetic, Review talk, hep-th/9701152 and references therein.

    Google Scholar 

  25. G. Horowitz, J. Maldacena and A. Strominger, Phys. Lett. B383 (1996) 151, hep-th/9603109.

    MathSciNet  ADS  Google Scholar 

  26. J. Maldacena, Ph.D. Thesis, Princeton University, hep-th/9607235

    Google Scholar 

  27. J. Maharana and J. Schwarz, Nucl.Phys. B390 (1993) 3; A. Sen, Nucl. Phys. D404 (1993) 109.

    Article  MathSciNet  ADS  Google Scholar 

  28. S. Ferrara, R. Kallosh and A. Strominger, Phys. Rev. D 52 (1995) 5412, hep-th/9508072; M. Cvetic and D. Youm, Phys. Rev. D53 (1996) 584, hep-th/9507090; G. Gibbons and P. Townsend, Phys. Rev. Lett. 71 (1993) 3754.

    MathSciNet  ADS  Google Scholar 

  29. F. Larsen and F. Wilczek, Phys. Lett. B375 (1996) 37, hep-th/9511064.

    MathSciNet  ADS  Google Scholar 

  30. R. Kallosh, A. Linde, T. Ortin, A. Peet, A. Van Proeyen, Phys. Rev. D46 (1992) 5278, hep-th/9205027.

    ADS  Google Scholar 

  31. G. Horowitz and A. Strominger, Phys. Rev. Lett. 77 (1996) 2368, hep-th/9602051.

    Article  ADS  Google Scholar 

  32. J. Maldacena and A. Strominger, Phys. Rev. D55(1997) 861, hep-th/9609026.

    MathSciNet  ADS  Google Scholar 

  33. J. Polchinski, S. Chaudhuri and C. Johnson, Notes on D-Branes, hep-th/9602052; J. Polchinski, Tasi Lectures on D-branes, hep-th/9611050.

    Google Scholar 

  34. M. Douglas, hep-th/9512077.

    Google Scholar 

  35. J. Breckenridge, R. Myers, A. Peet and C. Vafa, Phys. Lett. B391 (1997) 93, hep-th/9602065.

    MathSciNet  ADS  Google Scholar 

  36. C. Callan and J. Maldacena, Nucl. Phys. B472 (1996) 591, hep-th/9602043.

    Article  MathSciNet  ADS  Google Scholar 

  37. J. Maldacena and L. Susskind, Nucl. Phys. B475 (1996) 679, hep-th/9604042.

    Article  MathSciNet  ADS  Google Scholar 

  38. S.R. Das and S.D. Mathur, Phys. Lett. B375 (1996) 103, hep-th/9601152.

    MathSciNet  ADS  Google Scholar 

  39. S. Hassan and S. Wadia, Phys. Lett. B402 (1997) 43, hep-th/9703163; hep-th/9712213.

    MathSciNet  ADS  Google Scholar 

  40. R. Dijkgraaf, G. Moore, E. Verlinde and H. Verlinde, Commun. Math. Phys. 185 (1997) 197, hep-th/9608096.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B486 (1996) 77, hep-th/9603126; Nucl. Phys. B486 (1996) 89, hep-th/9604055; Nucl. Phys. B484 (1996) 543, hep-th/9607026.

    MathSciNet  ADS  Google Scholar 

  42. E. Witten, Nucl. Phys. 460 (1996) 541, hep-th/9511030.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. C. Vafa, Nucl. Phys. B463 (1996) 415, hep-th/9511088; Nucl. Phys. B463 (1996) 435, hep-th/9512078

    Article  MathSciNet  ADS  Google Scholar 

  44. M. Bershadsky, C. Vafa and V. Sadov, Nucl. Phys. B463 (1996)398,hep-th/9510225.

    Google Scholar 

  45. M. Li and E. Martinec, Class. Quant. Grav. 14 (1997) 3187, hep-th/9703211; hep-th/9704134.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. R. Dijkgraaf, E. Verlinde and H. Verlinde, Nucl. Phys. B506 (1997) 121, hep-th/9704018.

    Article  MathSciNet  ADS  Google Scholar 

  47. K. Becker, M. Becker and A. Strominger, Nucl. Phys. B456 (1995) 130, hep-th/9507158.

    Article  MathSciNet  ADS  Google Scholar 

  48. G. Horowitz and D. Marolf, Phys. Rev. D55 (1997) 835, hep-th/9605224; Phys. Rev. D55 (1997) 846, hep-th/9606113.

    MathSciNet  ADS  Google Scholar 

  49. J. Maldacena, A. Strominger and E. Witten, hep-th/9711053, to appear in JHEP.

    Google Scholar 

  50. J. Maldacena, Phys. Rev. D55 (1997) 7645, hep-th/9611125.

    MathSciNet  ADS  Google Scholar 

  51. S. Das, Phys. Rev. D56 (1997) 3582, hep-th/9703146.

    ADS  Google Scholar 

  52. J. Maldacena, Nucl. Phys. B477 (1996) 168, hep-th/9605016; I. Klebanov and A. Tseytlin, Nucl. Phys. B475 (1996) 164, hep-th/9604166; V. Balasubramanian and F. Larsen, Nucl. Phys. B478 (1996) 199, hep-th/9604189; A. Hanany and I. Klebanov, Nucl. Phys. B482 (1996) 105, hep-th/9606136; I. Klebanov and A. Tseytlin, Nucl. Phys. B479 (1996) 319, hep-th/9607107

    Article  MathSciNet  ADS  Google Scholar 

  53. A. Hashimoto and I. Klebanov, Phys. Lett. B381 (1996) 437, hep-th/9604065; M. Garousi and R. Myers, Nucl. Phys. B475 (1996) 193, hep-th/9603194.

    MathSciNet  ADS  Google Scholar 

  54. S. Das and S. Mathur Nucl. Phys. B478 (1996) 561, hep-th/9606185; Nucl. Phys. B482 (1996) 153, hep-th/9607149.

    Article  MathSciNet  ADS  Google Scholar 

  55. A. Dhar, G. Mandai and S. Wadia Phys. Lett. B388 (1996) 51, hep-th/9605234.

    ADS  Google Scholar 

  56. J. Preskill, P. Schwarz, A. Shapere, S. Trivedi and F. Wilczek, Mod. Phys. Lett.A 6 (1991) 2353; C. Holzhey and F. Wilczek, Nucl. Phys. B380 (1992) 447, hep-th/9202014; P. Kraus and F. Wilczek, Nucl. Phys. B433 (1995) 403.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. J. Breckenridge, D. Lowe, R. Myers, A. Peet, A. Strominger and C. Vafa, Phys. Lett. B381 (1996) 423, hep-th/9603078.

    MathSciNet  ADS  Google Scholar 

  58. C. Callan, S. Gubser, I. Klebanov, A. Tseytlin, Nucl. Phys. B489 65, hep-th/9610172; I. Klebanov and M. Krasnitz, Phys. Rev. D55 (1996) 3250, hep-th/9612051.

    Google Scholar 

  59. I. Klebanov, A. Rajaraman, A. Tseytlin, Nucl. Phys. B503 (1997) 157, hep-th/9704112; H.W. Lee, Y.S. Myung and J. Y. Kim, hep-th/9708099.

    Article  MathSciNet  ADS  Google Scholar 

  60. M. Krasnitz, I. Klebanov, Phys. Rev. D56 (1997) 2173, hep-th/9703216.

    MathSciNet  ADS  Google Scholar 

  61. J. Maldacena and A. Strominger, Phys. Rev. D56 (1997) 4975, hep-th/9702015.

    MathSciNet  ADS  Google Scholar 

  62. S. Mathur, hep-th/9704156.

    Google Scholar 

  63. S. Gubser, Phys. Rev. D56 (1997) 4984, hep-th/9704195.

    ADS  Google Scholar 

  64. S. Gubser, Phys. Rev. D56 (1997) 7854, hep-th/9706100; M. Cvetic and F. Larsen, hep-th/9712118; K. Hosomichi, hep-th/9711072.

    ADS  Google Scholar 

  65. M. Douglas, J. Polchinski and A. Strominger, hep-th/9703031.

    Google Scholar 

  66. J. Maldacena, hep-th/9705053.

    Google Scholar 

  67. J. Maldacena and A. Strominger, Phys. Rev. Lett. 77 (1996) 428, hep-th/9603061; C. Johnson, R. Kuhri and R. Myers, Phys. Lett. B378 (1996) 78, hep-th/9603062.

    Article  ADS  Google Scholar 

  68. G. Horowitz, D. Lowe and J. Maldacena, Phys. Rev. Lett. 77 (1996) 430, hep-th/9603195.

    Article  ADS  Google Scholar 

  69. S. Gubser and I. Klebanov, Phys. Rev. Lett. 77 (1996) 4491, hep-th/9609076.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  70. S. Hawking, Phys. Rev. D14 (1976) 2460.

    MathSciNet  ADS  Google Scholar 

  71. T. Jacobson, hep-th/9705017.

    Google Scholar 

  72. T. Jacobson, Phys. Rev. Lett. 75 (1995) 1260, gr-qc/9504004.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  73. S. Carlip, Phys. Rev. D51 (1995) 632, gr-qc/9409052.

    MathSciNet  ADS  Google Scholar 

  74. M. Cvetic and F. Larsen, Nucl. Phys. B506 (1997) 107, hep-th/9706071; Phys. Rev. D56 (1997) 4994, hep-th/9705192.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maldacena, J.M. (1999). Black Holes and D-Branes. In: Baulieu, L., Di Francesco, P., Douglas, M., Kazakov, V., Picco, M., Windey, P. (eds) Strings, Branes and Dualities. NATO ASI Series, vol 520. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4730-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4730-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5989-3

  • Online ISBN: 978-94-011-4730-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics