Skip to main content

Space Plasma Phenomena: Laboratory Modeling

I. Fields, Streams, Matter in Plasma

  • Chapter
Laboratory Astrophysics and Space Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 236))

Abstract

In the universe, plasma state is the overwhelmingly dominant state of matter. As plasma consists in ionized matter, it carries electric currents which are the source of magnetic fields; those penetrate all astrophysical plasmas and influence on their physical properties, inducing particles dynamics, waves and instabilities. In this review, we are mainly interested on low-density plasmas (where the particles mean free path is much greater that the characteristic dimensions inherent to the considered phenomena) which are typical, among others, of the planetary magnetospheres, the solar corona, or the interplanetary and intergalactic space; we will not be concerned with phenomena related to thermonuclear fusion type-plasmas, as found for example in Tokamaks or stellar bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akasofu, S.I. (1977) Physics of Magnetospheric Substorms, edited by Reidel, Dordrecht, Holland.

    Book  Google Scholar 

  • AlfVen, H. (1954) On the Origin of the Solar System, Oxford University Press, New York.

    MATH  Google Scholar 

  • AlfVen, H. (1986) Double Layers and Circuits in Astrophysics, IEEE Trans. Plasma Sci., 14, 779.

    Article  ADS  Google Scholar 

  • AlfVen, H. (1990) Cosmology in the Plasma Universe, IEEE Trans. Plasma Sci., 18, 5.

    Article  ADS  Google Scholar 

  • Altyntsev, A.T., Lebedev, N.V. and Strokin, N-A. (1990) Laboratory experiments on solar flare energy release, Adv. Space Res., 10, 73.

    Article  ADS  Google Scholar 

  • Anderson, D. (1981) Double layer formation in a magnetized laboratory plasma, J. Phys. D: Appl. Phys., 14, 1403.

    Article  ADS  Google Scholar 

  • Axnäs, I. and Brenning, N. (1991) CIV interaction: Laboratory experiments on the magnetic field and neutral density limits, Plasma Phys. Cont. Fusion, 33, 1.

    Article  ADS  Google Scholar 

  • Barkan, A., D’Angelo, N. and Merlino, R.L. (1994) Charging of Dust Grains in a Plasma, Phys. Rev. Lett., 73, 3093.

    Article  ADS  Google Scholar 

  • Barkan, A., D’Angelo, N. and Merlino, R.L. (1995) Laboratory experiments on electrostatic ion cyclotron waves in a dusty plasma, Planet. Space Sci., 43, 905.

    Article  ADS  Google Scholar 

  • Barkan, A., D’Angelo, N. and Merlino, R.L. (1996) Experiments on ion-acoustic waves in dusty plasmas, Planet. Space Sci., 44, 239.

    Article  ADS  Google Scholar 

  • Baum, P.J. and Bratenahl, A. (1980) Magnetic reconnection experiments, in Advances in Electronics and Electron Physics, edited by L. Marton and C. Marton, Vol. 54, pp. 1–67, Academic Press, New-York.

    Google Scholar 

  • Baum, P.J. and Bratenahl, A. (1982) The Laboratory Magnetosphere, Geophys. Res. Lett., 9, 435.

    Article  ADS  Google Scholar 

  • Baum, P.J. (1984) Laboratory simulation of magnetic reconnection, in Solar Terrestrial Physics: Present and Future, edited by D.M. Butler and K. Papadopoulos, NASA Ref. Publ., 1120, 26.

    Google Scholar 

  • Baumjohann, W. (1993) The near-Earth plasma sheet: an AMPTE/IRM perspective, Space Sci. Rev., 64, 141.

    Article  ADS  Google Scholar 

  • Bernhardt, P.A., Roussel-Dupré, R.A., Pongratz, M.B., Haerendel, G., Valenzuela, A., Gurnett, D.A. and Anderson, R.R. (1987) Observations and theory of the AMPTE magnetotail Barium Releases, J. Geophys. Res., 92, 5777.

    Article  ADS  Google Scholar 

  • Birn, J., Yur, G., Rahman, H.U. and Minami, S. (1992) On the termination of the closed field region of the magnetotail, J. Geophys. Res., 97, 14833.

    Article  ADS  Google Scholar 

  • Biskamp, D. (1994) Magnetic reconnection, Phys. Rep., 237, 179.

    Article  ADS  Google Scholar 

  • Bogdanov, S.Yu., Dreiden, G.V., Kirii, N.P., Komissarova, I.I., Markov, V.S., Ostrovskaya, G.V., Ostrovskii, Yu.L, Filippov, V.N., Frank, A.G., Khodzhaev, A.Z. and Shedova, E.N. (1992a) Plasma dynamics in current layers: I. Linear regimes of current sheet formation, Sov. J. Plasma Phys., 18, 654.

    Google Scholar 

  • Bogdanov, S.Yu., Dreiden, G.V., Kirii, N.P., Komissarova, I.I., Markov, V.S., Ostrovskaya, G.V., Ostrovskii, Yu.I., Filippov, V.N., Frank, A.G., Khodzhaev, A.Z. and Shedova, E.N. (1992b) Plasma dynamics in current layers: II. Nonlinear regimes of current sheet formation, Sov. J. Plasma Phys., 18, 661.

    Google Scholar 

  • Bolin, O., Brenning, N., Swenson, C.M. (1996) CRIT II electric and magnetic observations inside and outside an ionizing neutral jet, J. Geophys. Res., 101, 19729.

    Article  ADS  Google Scholar 

  • Bostick, W.H. (1986) What Laboratory-Produced Plasma Structures Can Contribute to the Understanding of Cosmic Structures Both Large and Small, IEEE Thins. Plasma Sci., 14, 703.

    Article  ADS  Google Scholar 

  • Boström, R., Gustafson, G., Holback, B., Holmgren, G., Koskinen, H. and Kintner, P. (1988) Characteristics of Solitary Waves and Weak Double Layers in the Magnetospheric Plasma, Phys. Rev. Lett., 61, 82.

    Article  ADS  Google Scholar 

  • Brenning, N., Lindberg, L. and Eriksson, A. (1981) Energization of electrons in a plasma beam entering a curved magnetic field, Plasma Phys., 23, 559.

    Article  ADS  Google Scholar 

  • Brenning, N. (1992a) Review of the CIV phenomenon, Space Sci. Rev., 59, 209.

    Article  ADS  Google Scholar 

  • Brenning, N. (1992b) A comparison between Laboratory and Space Experiments on Alfven’s CIV effect, IEEE Trans. Plasma Sci., 20, 778.

    Article  ADS  Google Scholar 

  • Brown, W.L., Lanzerotti, L.J., Poate, J.M. and Augustyniak, W.M. (1978) ’sputtering’ of ice by MeV light ions, Phys. Rev. Lett., 40, 1027.

    Article  ADS  Google Scholar 

  • Bulanov, S.V., Butov, I.Ya., Gvaladze, Yu.S., Zaborov, A.M., Kuzyutin, A.N., Ol’shanetskii, M.A., Salukvadze, R.G. and Tsurtsumiya, B.D. (1986) Pinch discharges in plasmas near magnetic separatrix surfaces, Sov. J. Plasma Phys., 12, 180.

    Google Scholar 

  • Bulanov, S.V. and Frank, A.G. (1992) An approach to the experimental study of magnetic reconnection in three-dimensional magnetic configurations, Sov. J. Plasma Phys., 18, 795.

    Google Scholar 

  • Burilina, V.B., Markov, V.S. and Frank, A.G. (1995) Determination of Current-Layer Parameters in Three-Dimensional Magnetic-Field Configurations Based on Magnetic Measurements, Plasma Phys. Rep., 21, 33.

    ADS  Google Scholar 

  • Chan, C., Cho, M.H., Hershkowitz, N. and Intrator, T. (1984) Laboratory Evidence for Ion-acoustic Double Layers, Phys. Rev. Lett., 52, 1782.

    Article  ADS  Google Scholar 

  • Chan, C, Morgan, M.A., Allen, R.C. (1986) Electron Dynamics in the Near Wake of a Conducting Body, IEEE Trans. Plasma Sci., 14, 915.

    Article  ADS  Google Scholar 

  • Crawford, D.A. and Schultz, P.H. (1991) Laboratory Investigations of Impact-Generated Plasma, J. Geophys. Res., 92, 18807.

    Article  ADS  Google Scholar 

  • Danielsson, L. and Brenning, N. (1975) Experiment on the interaction between a plasma and a neutral gas II, Phys. Fluids, 18, 661.

    Article  ADS  Google Scholar 

  • DeGroot, J.S., Barnes, C, Walstead, A.E. and Buneman, O. (1977) Localized Structures and Anomalous dc Resistivity, Phys. Rev. Lett., 38, 1283.

    Article  ADS  Google Scholar 

  • Dessler, A. (1993) Physics of the Jovian Magnetosphere, Cambridge University, Cambridge.

    Google Scholar 

  • Dickinson, H., Bostick, W.H., DiMarco, J.N. and Koslov, S. (1962) Experimental study of Raleigh-Taylor Instability in Plasma, Phys. Fluids, 5, 1048.

    Article  ADS  MATH  Google Scholar 

  • Enloe, C.L., Cooke, D.L., Meassick, S., Chan, C. and Tautz, M.F. (1993) Ion Collection in a Spacecraft Wake: Laboratory Simulations, J. Geophys. Res., 98, 13635.

    Article  ADS  Google Scholar 

  • Eselevich, V.G. and Fainshtein, V.G. (1986) Anomalous Ionization, Sov. J. Plasma Phys., 12, 143.

    Google Scholar 

  • Eselevich, V.G. and Fainshtein, V.G. (1981) Expansion of a collisionless plasma into vacuum, Sov. J. Plasma Phys., 7(3), 271.

    Google Scholar 

  • Fälthammar, C.G. (1986) Magnetosphere-Ionosphere Interactions — Near-Earth Manifestation of the Plasma Universe, IEEE Trans. Plasma Sci., 14, 616.

    Article  ADS  Google Scholar 

  • Fälthammar, CG. (1989) Electric fields in the magnetosphere: a Review, Planet. Space Sci., 37, 899.

    Article  ADS  Google Scholar 

  • Fälthammar, CG. (1990) Electrodynamics of Cosmical Plasma — Some Basic Aspects of Cosmological Importance, IEEE Trans. Plasma Sci., 18, 11.

    Article  ADS  Google Scholar 

  • Fälthammar, CG. and Brenning, N. (1995) Magnetosphere-Ionosphere Interactions as a Key to the Plasma Universe, IEEE Trans. Plasma Sci., 23, 2.

    Article  ADS  Google Scholar 

  • Gekelman, W., Maggs, J.E. and Pfister, H. (1992) Experiments on the Interaction of Current Channels in a Laboratory Plasma: Relaxation to the Force-Free State, IEEE Trans. Plasma Sci., 20, 614.

    Article  ADS  Google Scholar 

  • Goertz, C.K. (1989) Dusty Plasmas in the Solar System, Rev. Geophys., 27, 271.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Thomsen, M.F., Barne, S.J., Elphic, R.C. and Russell, C.T. (1991) Observation of reconnection of interplanetary and lobe magnetic field lines at the high latitude magnetopause, J. Geophys. Res., 96, 14097.

    Article  ADS  Google Scholar 

  • Gurevich, A.V., Paryiskaya, L.V. and Pitaevsky, L.P. (1966) Self-similar motion of rarefied plama, Sov. Phys. JETP, 22, 449.

    ADS  Google Scholar 

  • Haerendel, G. (1982) Alfven’s critical velocity effect tested in space, Z. Naturforsch., A37, 728.

    ADS  Google Scholar 

  • Hairapetian, G. and Stenzel, R.L. (1990) Observation of a Stationnary, Current-free Double Layer in a Plasma, Phys. Rev. Lett., 65, 175.

    Article  ADS  Google Scholar 

  • Hall, D.T., Strobel, D.F., Feldman, P.D., McGrath, M.A. and Weaver, H.A. (1995) Detection of oxygen atmosphere on Jupiter’s moon Europa, Nature, 373, 677.

    Article  ADS  Google Scholar 

  • Hatakeyama, R., Sutuki, Y. and Sato, N. (1983) Formation of electrostatic potential barriers between different plasmas, Phys. Rev. Lett., 50, 1203.

    Article  ADS  Google Scholar 

  • Hershkowitz, N. (1985) Review of recent laboratory double layer experiments, Space Science Rev., 41, 351.

    Article  ADS  Google Scholar 

  • Intrator, T., Menard, J. and Hershkowitz, N. (1993) Multiple magnetized double layers in the laboratory, Phys. Fluids B, 5, 806.

    Article  ADS  Google Scholar 

  • Johnson, R.E. (1996) Sputtering of ices in the outer solar system, Rev. Mod. Phys., 68, 305.

    Article  ADS  Google Scholar 

  • Jovanovic, D., Lynov, J.P., Michelsen, P., Pecseli, H.L., Rasmussen, J.J. and Thomsen, K. (1982) Three dimensional double layers in magnetized plasmas, Geophys. Res. Lett., 9, 1049.

    Article  ADS  Google Scholar 

  • Kikuchi, H. (1994) Dusty and Dirty Plasmas, Noise and Chaos in Space and in the Laboratory, edited by H. Kikuchi, Plenum, New York.

    Google Scholar 

  • Kimori, A., Sato, N., Sugai, H. and Hatta, Y. (1977) Drift Motion of a Plasma in a Curved Magnetic Field, Plasma Phys., 19, 283.

    Article  ADS  Google Scholar 

  • Lemaire, J. and Roth, M. (1991) Non-Steady-State Solar Wind-Magnetosphere Interaction, Space Sci. Rev., 57, 59.

    Article  ADS  Google Scholar 

  • Lin, Y. and Lee, L.C. (1994) Structure of reconnection layers in the magnetosphere, Space Sci. Rev., 65, 59.

    Article  ADS  Google Scholar 

  • Michida, S. and Goertz, C.K. (1988) The electromagnetic effect on the critical ionization process, J. Geophys. Res., 93, 11495.

    Article  ADS  Google Scholar 

  • Miller, J.A., Cargill, P.J., Emslie, A.G., Holman, G.D., Dennis, B.R., LaRosa, T.N., Winglee, R.M., Benka, S.G. and Tsuneta, S. (1997) Critical issues for understanding particle acceleration in impulsive solar flares, J. Geophys. Res., 102, 14631.

    Article  ADS  Google Scholar 

  • Minami, S. and Takeya, Y. (1985) Flow of artificial plasma in a simulated magnetosphere: evidence of direct interplanetary magnetic field control of the magnetosphere, J. Geophys. Res., 90, 9503.

    Article  ADS  Google Scholar 

  • Minami, S., Baum, P.J., Kamin, G. and White, R.S. (1986) Laboratory formation of a simulated comet, Geophys. Res. Lett., 13(8), 884.

    Article  ADS  Google Scholar 

  • Minami, S., Hashimoto, K. and Takeya, Y. (1990) The dipole tilt angle effect on the magnetosphere of Neptune: a laboratory simulation, Geophys. Res. Lett., 17, 1885.

    Article  ADS  Google Scholar 

  • Minami, S., Podgorny, A.I. and Podgorny, I.M. (1993) Laboratory evidence of earthward electric field in the magnetotail current sheet, Geophys. Res. Lett., 20, 9.

    Article  ADS  Google Scholar 

  • Minami, S. (1994) Effects of Interstellar Neutral Wind on the Structure of the Heliosphere — Laboratory Simulation, in Dusty and Dirty Plasmas, Noise and Chaos in Space and in the Laboratory, edited by H. Kikuchi, Plenum, New York, p. 129.

    Chapter  Google Scholar 

  • Mishin, E.V., Treumann, R.A. and Kapitanov, V. Ya. (1986) Anomalous Diffusion Across the Magnetic Field-Plasma Boundary: the Porcupine Artificial Plasma Jet, J. Geophys. Res., 91, 10183.

    Article  ADS  Google Scholar 

  • Morgan, M.A., Chan, C, Cooke, D.L. and Tautz, M.F. (1989) The Dynamics of charged Particles in the Near Wake of a Very Negatively Charged Body — Laboratory Experiment and Numerical Simulation, IEEE Trans. Plasma Sci., 17, 220.

    Article  ADS  Google Scholar 

  • Mozer, F.S. (1991) Questions about the electric fields in the auroral acceleration region, in Abstracts Workshop Plasma Experiments in the Laboratory and in Space, Alpach, Austria, July 1-5, p. 25.

    Google Scholar 

  • Ness, N.F., Acuna, M.H., Burlaga, L.F., Connerney, J.E.P., Lepping, R.P. and Neubauer, F.M. (1989) Magnetic fields at Neptune, Science, 246, 1473.

    Article  ADS  Google Scholar 

  • Newell, P.T. (1985) Review of the Critical Ionization Velocity Effect in Space, Rev. Geophys., 23, 93.

    Article  ADS  Google Scholar 

  • Oberc, P. and Parzydlo, W. (1992) Impacts of dust particles m > 10-9 gm in Halley coma as seen in electric field wave forms of Vega2, Icarus, 98, 195.

    Article  ADS  Google Scholar 

  • Ogilvie, K.W., Steinberg, J.T., Fitzenreiter, R.J., Owen, C.J., Lazarus, A.J., Farrell, W.M. and Torbert, R.B. (1996) Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994, Geophys. Res. Lett., 23, 1255.

    Article  ADS  Google Scholar 

  • Petelski, E.F., Fahr, HJ., Ripken, H.W., Brenning, N. and Axnäs, I. (1980) Enhanced interaction of the solar wind and the interstellar neutral gas by virtue of a critical velocity effect, Astron. Astrophys., 87, 20.

    ADS  Google Scholar 

  • Petscheck, H.E. (1964) Magnetic field annihilation, in AAS-NASA Symposium on the Physics of Solar Flares, edited by W.N. Hess (NASA, Washington, DC), p. 425.

    Google Scholar 

  • Piel, A. (1990) Review of Laboratory Experiments on Alfven’s Critical Ionization Velocity, Adv. Space Res., 10, 7.

    Article  ADS  Google Scholar 

  • Pieper, J.B. and Goree, J. (1996) Dispersion of Plasma Dust Acoustic Waves in a strong-Coupling Regime, Phys. Rev. Lett., 77, 3137.

    Article  ADS  Google Scholar 

  • Podgorny, I.M. (1976) Laboratory experiments: plasma intrusion into the magnetic field, In Physics of Solar Planetary Environments, edited by D.J. Williams, AGU, Washington, D.C., p. 241.

    Google Scholar 

  • Podgorny, I.M. and Andrijanov, Yu.V. (1978) Simulation of the solar wind interaction with non-magnetic celestial bodies, Planet. Space Sci., 26, 99.

    Article  ADS  Google Scholar 

  • Potter, A.E. and Morgan, T.H. (1988) Discovery of Sodium and Potassium Vapor in the Atmosphere of the Moon, Science, 241, 675.

    Article  ADS  Google Scholar 

  • Prabhakara, H.R. and Tanna, V.L. (1996) Trapping of dust and dust acoustic waves in laboratory plasmas, Phys. Plasmas, 3, 3176.

    Article  ADS  Google Scholar 

  • Raadu, M.A. (1989) The Physics of Double layers and their role in Astrophysics, Phys. Rep., 178, 25.

    Article  ADS  Google Scholar 

  • Rahman, H.U., Yur, G., Wong, G. and White, R.S. (1989) Laboratory Simulation of the Large-Scale Birkeland Current System in the Polar Region with Northward Interplanetary Magnetic Field, J. Geophys. Res., 94, 6873.

    Article  ADS  Google Scholar 

  • Raychaudhuri, S., Hill, J., Chang, H.Y. (1986) An experiment on the plasma expansion into a wake, Phys. Fluids, 29, 289.

    Article  ADS  Google Scholar 

  • Ripin, B.H., McLean, E.A., Manka, C.K., Pawley, C, Stamper, J.A., Peyser, T.A., Mostovych, A.N., Grun, J., Hassam, A.B. and Huba, J.D. (1987) Large-Larmor-Radius Interchange Instability, Phys. Rev. Lett., 59, 2299.

    Article  ADS  Google Scholar 

  • Ripin, B.H., Huba, J.D., McLean, E.A., Manka, C.K., Peyser, T.A., Burns, H.R. and Grun, J. (1993) Sub-Alfvenic plasma expansion, Phys. Fluids B, 5, 3491.

    Article  ADS  Google Scholar 

  • Robertson, S. (1995) Experimental studies of charged dust particles, Phys. Plasmas, 2, 2200.

    Article  ADS  Google Scholar 

  • Samir, U., Wright Jr., K.H. and Stone, N.H. (1983) The expansion of a plasma into a vacuum: basic phenomenon and processes and applications to space physics, Rev. Geophys. Space Phys., 21, 1631.

    Article  ADS  Google Scholar 

  • Sato, N., Nakamura, M. and Hatakeyama, R. (1986) Three-Dimensional Double Layers Inducing Ion-Cyclotron Oscillations in a Collisionless Plasma, Phys. Rev. Lett., 57, 1227.

    Article  ADS  Google Scholar 

  • Shawan, S.D., Fälthammar, CG. and Block, L.P. (1978) On the nature of large auroral zone electric fields at 1 IT-RE altitude, J. Geophys. Res., 83, 1049.

    Article  ADS  Google Scholar 

  • Sheehan, D.P., Casey, C.A. and Volz, L.T. (1995) Interaction of an expanding plasma cloud with a simple antenna: Application to anomalous voltage signals observed by Voyager 1, Voyager 2, ICE and Vega spacecrafts, J. Geophys. Res., 100, 19805.

    Article  ADS  Google Scholar 

  • Shemansky, D.E., Matherson, P., Hall, D.T., Hu, H.Y. and Tripp, T.M. (1993) The detection of the hydroxyl radical in the Saturn magnetosphere, Nature, 363, 329.

    Article  ADS  Google Scholar 

  • Sheridan, T.E., Goree, J., Chiu, Y.T., Bairden, R.L. and Kiessling, J.A. (1992) Observation of Dust Shedding From Material Bodies in a Plasma, J. Geophys. Res., 97, 2935.

    Article  ADS  Google Scholar 

  • Shi, M., Baragiola, R.A., Grosjean, D.E., Johnson, R.E., Jurac, S. and Schou, J. (1995) Sputtering of water ice surfaces and the production of extended neutral atmospheres, J. Geophys. Res., 100, 26387.

    Article  ADS  Google Scholar 

  • Smith, B.A. et al. (1982) A New Look at the Saturn System: The Voyager-2 Images, Science, 215, 504.

    Article  ADS  Google Scholar 

  • Sonnerup, B.U.Ö. et al. (1984) Reconnection of magnetic fields, in Solar Terrestrial Physics: Present and Future, edited by D.M. Butler and K. Papadopoulos, NASA Ref. Publ., 1130, chap. 1.

    Google Scholar 

  • Sorensen, J.E., Stone, N.H. and Wright Jr., K.H. (1997) Change on ion distribution while crossing the space shuttle wake, J. Geophys. Res., 102, 24117.

    Article  ADS  Google Scholar 

  • Stenzel, R.L., Oyama, M., Nakamura, Y. (1981) Potential double layers formed by ion beam reflection in magnetized plasmas, Phys. Fluids, 24, 708.

    Article  ADS  Google Scholar 

  • Stenzel, R.L., Gekelman, W. and Wild, N. (1983) Magnetic Field Line Reconnection Experiments, 5. Current Disruptions and Double Layers, J. Geophys. Res., 88, 4793.

    Article  ADS  Google Scholar 

  • Stenzel, R.L., Urrutia, J.M., Gekelman, W. and Pfister, H. (1990) Laboratory experiments on magnetic reconnection and current systems, Adv. Space Res., 10, 55.

    Article  ADS  Google Scholar 

  • Stone, N.H. (1981) The plasma wake of mesosonic conducting bodies. Part 1. An experimental parametric study of ion focusing by the plasma sheath, J. Plasma Phys., 25, 351.

    Article  ADS  Google Scholar 

  • Suszcynsky, D.M., Borovsky, J.E. and Goertz, C.K. (1992) Secondary Electron Yields of Solar System Ices, J. Geophys. Res., 97, 2611.

    Article  ADS  Google Scholar 

  • Svenes, K.R. and Troim, J. (1994) Laboratory simulation of vehicle-plasma interaction in low Earth orbit, Planet. Space Sci., 42, 81.

    Article  ADS  Google Scholar 

  • Takeda, Y. and Yamagiwa, K. (1991) Observations of a Buneman double layer and associated electron heating in a high voltage straight plasma discharge, Phys. Fluids B, 3, 288.

    Article  ADS  Google Scholar 

  • Temerin, M., Cerny, K., Lotko, W. and Mozer, F.S. (1982) Observation of double layers and solitary waves in the auroral plasma, Phys. Rev. Lett., 48, 1175.

    Article  ADS  Google Scholar 

  • Thomas, H., Morfill, G.E., Dernmel, V., Goree, J., Feuerbacher, B. and Möhlmann, D. (1994) Plasma Crystal: Coulomb Crystallisation in a Dusty Plasma, Phys. Rev. Lett., 73, 652.

    Article  ADS  Google Scholar 

  • Thompson, C, Barkan, A., D’Angelo, N. and Merlino, R.L. (1997) Dust acoustic waves in a direct current glow discharge, Phys. Plasmas, 4, 2331.

    Article  ADS  Google Scholar 

  • Tsytovich, V.N. (1997) Dust plasma crystals, drops, and clouds, Phys. Usp., 40, 53.

    Article  ADS  Google Scholar 

  • Velikanova, L.G., Kirii, N.P., Kiselev, D.T., Markov, V.S., Preobrazhenskii, N.G. and Frank, A.G. (1992) Evolution of a current layer from the results of spectrotomo-graphic studies Evolution of a current layer from the results of spectrotomo-graphic studies, Sov. J. Plasma Phys., 18, 800.

    Google Scholar 

  • Volwerk, M. and Kuijpers, J. (1994) Strong double layers: existence criteria, and annihilation, Astrophys. J. Suppl., 90, 589.

    Article  ADS  Google Scholar 

  • Walch, B., Horanyi, M. and Robertson, S. (1995) Charging of Dust Grains in Plasma with Energetic Electrons, Phys. Rev. Lett., 75, 838.

    Article  ADS  Google Scholar 

  • Wessel, F.J., Hong, R., Song, J., Fisher, A., Rostoker, N., Ron, A., Li, R. and Fan, R.Y. (1988) Plasmoid propagation in a transverse magnetic field and in a magnetized plasma, Phys. Fluids, 31, 3778.

    Article  ADS  Google Scholar 

  • Wright Jr., K.H., Stone, N.H. and Samir, U. (1985) A study of plasma expansion phenomena in laboratory generated plasma wakes: preliminary results, J. Plasma Phys., 33, 71.

    Article  ADS  Google Scholar 

  • Wright Jr., K.H., Parks, D.E., Katz, I., Stone, N.H. and Samir, U. (1986) More on the expansion of a collisionless plasma into the wake of a body, J. Plasma Phys., 35, 119.

    Article  ADS  Google Scholar 

  • Yamada, M., Perkins, F.W., MacAulay, A.K., Ono, Y. and Katsurai, M. (1991) Initial results from investigation of three-dimensional magnetic reconnection in a laboratory plasma, Phys. Fluids B, 3, 2379.

    Article  ADS  Google Scholar 

  • Yamada, M., Ji, H., Hsu, S., Carter, T., Kulsrud, R., Bretz, N., Jobes, F., Ono, Y. and Perkins, F. (1997) Study of driven magnetic reconnection in a laboratory plasma, Phys. Plasmas, 4, 1936.

    Article  ADS  Google Scholar 

  • Yur, G., Rahman, H.U., Birn, J., Wessel, F.J. and Minami, S. (1995) Laboratory facility for magnetospheric simulation, J. Geophys. Res., 100, 23727.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Krafft, C. (1999). Space Plasma Phenomena: Laboratory Modeling. In: Ehrenfreund, P., Krafft, C., Kochan, H., Pirronello, V. (eds) Laboratory Astrophysics and Space Research. Astrophysics and Space Science Library, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4728-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4728-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5988-6

  • Online ISBN: 978-94-011-4728-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics