Skip to main content

Astrobiology studies of microbes in simulated interplanetary space

  • Chapter
Laboratory Astrophysics and Space Research

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 236))

Abstract

For laboratory studies on the responses of resistant life forms to simulated interplanetary space conditions, testbeds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity that can be applied separately, or in selected combinations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow, or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or bacterial endospores. Such studies contribute to answer several questions pertinent to astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the probability and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov, S.S. (1993) Microorganisms in the Antarctic ice. in: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 265–295.

    Google Scholar 

  2. Arrhenius, S. (1903) Die Verbreitung des Lebens im Weltenraum. Die Umschau 7, 481–485.

    Google Scholar 

  3. Battista, J.R. (1997) Against all odds: the survival strategies of Deinococcus radiodurans. Ann. Rev. Microbiol. 51, 203–224.

    Article  Google Scholar 

  4. Brueschke, E.E., Suess, R.H., Willard M. (1961) The viability of microorganisms in ultra-high vacuum. Planet. Space Sci. 8, 30–34.

    Article  ADS  Google Scholar 

  5. Bücker, H., Horneck, G. (1970) Survival of microorganisms under simulated space conditions. Life Sci. Space Res. 8, 33–38.

    Google Scholar 

  6. Bücker, H., Horneck, G. (1975) Studies on the effects of cosmic HZE-particles on different biological systems in the Biostack I and II flown on board of Apollo 16 and 17. In: O.F. Nygaard, H.J. Adler, W.K. Sinclair (eds.) Radiation Research, Academic Press, New York, pp. 1138–1151.

    Google Scholar 

  7. Cadet, J., Voituriez, L., Grand, A., Hruska, F.E., Vigny, P., Kan, L.S. (1985) Photosensitized reactions of nucleic acids. Biochimie 67, 277.

    Article  Google Scholar 

  8. Cadet, J., Weinfeld, (1993) Detecting DNA damage. Anal. Chem. 65, 675A–682A.

    Google Scholar 

  9. Cox, C.S. (1993) Roles of water molecules in bacteria and viruses. Origins of Life and Evolution of the Biosphere, 23, 29–36.

    Article  ADS  Google Scholar 

  10. Crowe, L.M., Crowe J.H. (1992) Anhydrobiosis: a strategy for survival. Adv. Space Res. 12, (4)239-(4)247.

    Google Scholar 

  11. Dodonova, N.Ya., Kiseleva, M.N., Remisova, L.A., Tsyganenko, N.M. (1982) The vacuum ultraviolet photochemistry of nucleotides. Photochem. Photobiol. 35, 129–132.

    Article  Google Scholar 

  12. Dose, K., Bieger-Dose, A., Labusch, M., Gill, M. (1992) Survival in extreme dryness and DNA single-strand breaks. Adv. Space Res. 12, (4)221-(4)229.

    Google Scholar 

  13. Foster, T.L., Winanas, L. Jr., Casey, R.C., Kirschner, L.E. (1978) Response of terrestrial microorganisms to simulated Martian environment. Appl. Environ. Microbiol. 35, 730–737.

    Google Scholar 

  14. Frankenberg-Schwager, M., Bücker, H., Wollenhaupt, H. (1974) Survivability of microorganisms in space and its impact on planetary exploration. Raumfahrtforschung, 5, 209–212.

    ADS  Google Scholar 

  15. Friedberg, E.C., Walker, G.C., Siede, W. (1995) DNA Repair and Mutagenesis. ASM Press, Washington.

    Google Scholar 

  16. Friedmann, E.I. (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215, 1045–1053.

    Article  ADS  Google Scholar 

  17. Friedmann, E.I. (1993) Antarctic Microbiology, Wiley-Liss, New York.

    Google Scholar 

  18. Gilichinsky, D.A., Soina, V.S., Petrova, M.A. (1993) Cryoprotective properties of water in the Earth cryo-lithosphere and its role in exobiology. Origins of Life 23, 65–75.

    Article  Google Scholar 

  19. Gladman, B. (1997) Destination: Earth. Martian meteorite delivery. Icarus, 130, 228–246.

    Article  ADS  Google Scholar 

  20. Hemmersbach, R., Voormanns, R., Hader, D.-P. (1996) Graviresponses in Paramecium biaurelia under different accelerations — studies on the ground and in space. J. Exp. Biol. 199, 2199–2205.

    Google Scholar 

  21. Horneck, G., (1981) Survival of microorganisms in space: areview. Adv. Space Res. 1, (14)39-(14)48.

    Google Scholar 

  22. Horneck, G. (1992) Radiobiological experiments in space: a review. Nucl. Tracks Radiat. Meas. 20, 185–205.

    Article  Google Scholar 

  23. Horneck, G. (1993) Responses of Bacillus subtilis spores to space environment: results from experiments in space. Origins of Life 23, 37–52.

    Article  Google Scholar 

  24. Horneck, G. (1995a) Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: areview. Planet. Space Sci. 43, 189–217.

    Article  ADS  Google Scholar 

  25. Horneck, G. (1995b) Quantification of the biological effectiveness of environmental UV radiation. J. Photo-chem. Photobiol. B: Biol. 31, 43–49.

    Article  Google Scholar 

  26. Horneck, G., Bücker, H., Wollenhaupt, H. (1971) Survival of bacterial spores under some simulated lunar surface conditions. Life Sci. Space Res. 9, 119–124.

    Google Scholar 

  27. Horneck, G., Bücker, H., Reitz, G., Requardt, H., Dose, K., Martens, K.D., Mennigmann, H.D., Weber, P. (1984) Microorganisms in the space environment. Science 225, 226–228.

    Article  ADS  Google Scholar 

  28. Horneck, G., Bücker, H., Reitz, G., (1994) Long-term survival of bacterial spores in space. Adv. Space Res. (10)41-(10)45.

    Google Scholar 

  29. Horneck, G., Eschweiler, U., Reitz, G., Wehner, J., Willimek, R., Strauch, K. (1995) Biological responses to space: results of the experiment „Exobiological Unit“ of ERA on EURECA I. Adv. Space Res., 16(8), 105.

    Article  ADS  Google Scholar 

  30. Imshenetsky, A.A., Lysenko, D.V., Kazakov, G.A. (1978) Upper boundary of the biosphere. Appl. Environm. Microbiol. 35, 1–5.

    Google Scholar 

  31. Ito, T. (1989) Vacuum ultraviolet photobiology with synchrotron radiation, In: R.M. Sweet, A.D. Wood-head (eds.), Symchrotron Radiation in Structured Biology, Plenum, New York, pp. 221–241.

    Chapter  Google Scholar 

  32. Kappen, L. (1973) Response to extreme environments. In: Ahmadjian, V., Hale, M.E. (eds.) The Lichens III. 10, Academic Press, New York, pp. 311–380.

    Chapter  Google Scholar 

  33. Keller, B., Horneck, G. (1992) Action spectra in the vacuum UV and far UV /122 — 30 nm) for inactivation of wet and vacuum-dry spores of Streptomyces griseus and photoreactivation. J. Photochem. Photobiol. B:Biol. 16, 61–72.

    Article  Google Scholar 

  34. Kiefer, J., Kost, M., Schenk-Meuser, K. (1996) Radiation biology. In: D. Moore, P. Bie and H. Oser (eds.) Biological and Medical Research in Space, Springer, Berlin, pp. 300–367.

    Chapter  Google Scholar 

  35. Koike, J., Oshima, T., Koike, K., Taguchi, H., Tanaka, R., Nishimura, K., Miyaji, M. (1992) Survival rates of some terrestrial microorganisms under simulated space conditions. Adv. Space Res. 12, (4)271-(4)274.

    Google Scholar 

  36. Kolbel-Boekel, J., Anders, E., Nehrkorn, A (1988) Microbial communities in the saturated groundwater environment, II. Diversity of bacterial communities in a Pleistocene sand aquifer and their in vitro activities. Microbial Ecology 16, 31–48.

    Article  Google Scholar 

  37. Lindberg, C, Horneck, G. (1991) Action spectra for survival and spore photoproduct formation of Bacillus subtilis irradiated with short wavelength (200–300 nm) UV at atmospheric pressure and in vacuo. J. Photochem. Photobiol. B:Biol. 11, 69–80.

    Article  Google Scholar 

  38. Mancinelli, R. L., White, M. R., Rothschild L. J. (1998) Biopan-survival I: exposure of osmophilic microbes to the space environment. Adv. Space Res. (in press).

    Google Scholar 

  39. Mancinelli, R.L. (1989) Peroxides and the survivability of microorganisms on the surface of Mars. Adv. Space Res. 9, (6)191-(6)195.

    Google Scholar 

  40. Melosh, H.J. (1988) The rocky road to Panspermia. Nature 332, 687–688.

    Article  ADS  Google Scholar 

  41. Moll, D.M., Vestal, J.R. (1993) Survival of microorganisms in smectite clays: implications for Martian exobiology. Icarus 98, 233–239.

    Article  ADS  Google Scholar 

  42. Moreno, M.A. (1988) Microorganism transport from Earth to Mars. Nature 336, 209.

    Article  ADS  Google Scholar 

  43. Munakata, N., Hieda, k., Kobayashi, K., Ito, T (1986) Action spectra in the ultraviolet wavelength (150–250 nm) for inactivation and mutagenesis ofBacillus subtilis spores obtained with synchrotron radiation. Photochem. Photobiol. 44, 385–390.

    Article  Google Scholar 

  44. Munakata, N., Saitou, M., Takahashi, N., Hieda, K., Morohoshi, F.(1997) Induction of unique tandem-double change mutations in bacterial spores exposed to extreme dryness. Mutation Research, 390, 189–195.

    Article  Google Scholar 

  45. Nussinov, M.D., Lysenko, S.V. (1983) Cosmic vacuum prevents radiopanspermia. Origins of Life, 13, 153–164.

    Article  ADS  Google Scholar 

  46. Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.

    Google Scholar 

  47. Richter, H. (1865) Zur Darwinschen Lehre. Schmidts Jahrbuch Ges. Med. 126, 243–249.

    Google Scholar 

  48. Rothschild, L.J., Giver, L.J., White, MR., Mancinelli, R.L. (1994) Metabolie activity of microorganisms in evaporites. J. Phycol. 30, 431–438.

    Article  Google Scholar 

  49. Rummel, L.D. (1992) Planetary protection policy (USA). Adv. Space Res. 12, (4)129-(4)131.

    Google Scholar 

  50. Schäfer, M., Facius, R., Reitz, G. (1994) Inactivation of individual Bacillus subtilis spores in dependence of their distance to single accelerated heavy ions. Adv. Space Res. 14, (10)1039-(10)1046.

    Google Scholar 

  51. Seckmeyer G. and Payer H.D., 1993, A new sunlight simulator for ecological research on plants. J. Photo-chem. Photobiol. B: Biol. 21, 175–181.

    Article  Google Scholar 

  52. Seidlitz, H.K., Döhring, T., Köfferlein, M., Payer, H.D., Thiel, S. (1995) Provision of artificial UV irradiation for experimental plant ecology. In: H. Bauer, C. Nolan (eds.) Proceedings of the European Symposium on effects of environmental UV radiation, Munich, Germany October 27–29 1993, EUR 15607 EN, DG, XII, EC Brussels, pp. 161-164.

    Google Scholar 

  53. Siebert, J., Hirsch, P. (1988), Characterization of 15 selected coccal bacteria isolated from Antarctic rock and soil samples from the McMurdo-Dry Valleys (South Victoria land). Polar Biol., 9, 37–44.

    Article  Google Scholar 

  54. Stetter, K.O. (1996) Hyperthermophilic prokaryotes. FEMS Microbiol. Rev. 18, 149–158.

    Article  Google Scholar 

  55. Stevens, T.O., McKinley, J.P. (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270, 450–454.

    Article  ADS  Google Scholar 

  56. Varghese, A.J. (1970) 5-Thyminyl-5,6-dihydrothymidine from DNA irradiated with ultraviolet light. Biochim. Biophys. Res. Coma 38, 484–490.

    Article  Google Scholar 

  57. Vishniac, H.S. (1993) The microbiology of Antarctic soils. In: E. Friedmann (ed.) Antarctic Microbiology, Wiley-Liss, New York, pp. 297–341.

    Google Scholar 

  58. Watanabe, M., Furuya, M., Mioshi, Y., Inoue, Y., Iwahashi, I., Matsumoto, K. (1982) Design and performance of the Okazaki large spectrograph for photobiological research. Photochem. Photobiol. 36, 491–498.

    Article  Google Scholar 

  59. Weber, P., Greenberg, J.M. Can spores survive in interstellar space? Nature 316, 403–407.

    Google Scholar 

  60. Wehner J., Horneck, G. (1995) Effects of vacuum UV and UVC radiation on dry E. coli plasmid pUC19. I. Inactivation, lacZ mutation induction and strand breaks. J. Photochem. Photobiol. B: Biol. 28, 77–85.

    Article  Google Scholar 

  61. Weisbrod, U., Bücker, H., Horneck, G., Kraft, G. (1992) Heavy-ion effects on bacterial spores: the impact parameter dependence of the inactivation. Rad. Res. 129, 250–257.

    Article  Google Scholar 

  62. Wormsley, C. (1981) Biochemical and physiological aspects of anhydrobiosis. Comp. Biochem. Physiol. 70B, 669.

    Google Scholar 

  63. Wynn-Williams, D.D. (1996). Response of pioneer microbial colonists to environmental change in Antarctica. Microbial Ecology 31, 177–188.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Horneck, G. (1999). Astrobiology studies of microbes in simulated interplanetary space. In: Ehrenfreund, P., Krafft, C., Kochan, H., Pirronello, V. (eds) Laboratory Astrophysics and Space Research. Astrophysics and Space Science Library, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4728-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4728-6_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5988-6

  • Online ISBN: 978-94-011-4728-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics