Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 236))

Abstract

In this review, the nature of carbon-containing molecules and carbonaceous solids present in meteorites, comets, and the interstellar medium is discussed. Carbon plays an active role in the lifecycle of stars and the interstellar medium. It is the basis of a rich interstellar chemistry and the main component of pre-biotic organic material in space. The aim of the review is to build a bridge between astronomical spectroscopy and laboratory studies relevant to the investigation of cosmic carbon. Special emphasis is given to the structural variety of carbon-containing species and their characterization by experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allamandola, L.J., Tielens, A.G.G.M. and Barker, J.R. (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands — Auto exhaust along the Milky Way, Astrophys. J., Vol. no. 290, p. L25.

    Article  ADS  Google Scholar 

  • Anders, E. and Zinner, E. (1993) Interstellar grains in primitive meteorites — Diamond, silicon carbide, and graphite, Meteoritics, Vol. no. 28, p. 490.

    ADS  Google Scholar 

  • Bakes, E.L.O. and Tielens, A.G.G.M. (1994) The photoelectric heating mechanism for very small graphitic grains and polycyclic aromatic hydrocarbons, Astrophys. J., Vol. no. 427, p. 822.

    Article  ADS  Google Scholar 

  • Beegle, L.W., Wdowiak, T.J., Robinson, M.S., Cronin, J.R., McGehee, M.D., Clemett, S.J., and Gillette, S. (1997) Experimental indication of a naphtalene-base molecular aggregate for the carrier of the 2175 Angstrom interstellar extinction feature, Astrophys. J., Vol. no. 487, p. 976.

    Article  ADS  Google Scholar 

  • Bernatowicz, T.J. (1997) Presolar grains from meteorites, in From Stardust to Planetesimals, Y.J. Pendleton and A.G.G.M. Tielens (eds.), ASP Conf. Ser. 122, p.227.

    Google Scholar 

  • Bernatowicz, T.J., Gibbons, P.C. and Lewis, R.S. (1990) Electron energy loss spectrometry of interstellar diamonds, Astrophys. J., Vol. no. 359, p. 246.

    Article  ADS  Google Scholar 

  • Bernatowicz, T.J., Amari, S., Zinner, E., and Lewis, R. (1991) Interstellar grains within interstellar grains, Astrophys. I., Vol. no. 373, p. L73.

    Article  ADS  Google Scholar 

  • Bernatowicz, T.J., Cowsik, R., Gibbons, P., Lodders, K., Fegley, B., Amari, S., and Lewis, R. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite, Astrophys. J., Vol. no. 472, p. 760.

    Article  ADS  Google Scholar 

  • Brooke, T.Y., Tokunaga, A.T., Weaver, H.A., Crovisier, J., Bockelee-Morvan, D. and Crisp, D. (1996) Detection of acetylene in the infrared spectrum of comet Hyakutake, Nature, Vol. no. 383, p. 606.

    Article  ADS  Google Scholar 

  • Cardelli, J.A., Meyer, D.M., Jura, M. and Savage, B.D. (1996) The abundance of interstellar carbon, Astrophys. J., Vol. no. 467, p. 334.

    Article  ADS  Google Scholar 

  • Ciolek, G.E. and Mouschovias, T.C. (1996) Effect of ambipolar diffusion on dust-to-gas ratio in protostellar cores, Astrophys. J., Vol. no. 468, p. 749.

    Article  ADS  Google Scholar 

  • Clayton, D.D., Meyer, B.S., Sanderson, C.I., Russell, S.S. and Pillinger, C.T. (1995) Carbon and nitrogen isotopes in type II supernova diamonds, Astrophys. J., Vol. no. 447, p. 894.

    Article  ADS  Google Scholar 

  • Colangeli, L., Mennella, V., Palumbo, P., Rotundi, A. and Bussoletti, E. (1995) Mass extinction coefficients of various submicron amorphous carbon grains: tabulated values from 40 nm to 2 mm, Astron. Astrophys. Suppl. Series, Vol. no. 113, p. 561.

    ADS  Google Scholar 

  • Combes, M., Crovisier, J., Encrenaz, T., Moroz, V.I. and Bibring, J.-P. (1988) The 2.5–12 micron spectrum of comet Halley from IKS-VEGA Experiment, Icarus, Vol. no. 76, p. 404.

    Article  ADS  Google Scholar 

  • Cook, D.J., Schlemmer, S., Balucani, N., Wagner, D.R., Harrison, J.A., Steiner, B. and Saykally, R.J. (1998) Single photon infrared emission spectroscopy: A study of IR emission from UV laser excited PAHs between 3 and 15 μm, J. Phys. Chem. A, Vol. no. 102, 1465.

    Article  Google Scholar 

  • Cronin, J.R. and Chang, S. (1993), in The Chemistry of Life’s Origin, J.M. Greenberg et. al. (eds.), Kluwer Academic Publishers, Dordrecht, p. 209.

    Chapter  Google Scholar 

  • Cruikshank, D.P. (1997) Organic matter in the outer solar system: From the meteorites to the Kuiper belt, in From Stardust to Planetesimals, Y.J. Pendleton and A.G.G.M. Tielens (eds.), ASP Conf. Ser. 122, p. 315.

    Google Scholar 

  • Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S. and Buseck, P.R. (1996) Genesis of presolar diamonds: Comparative high-resolution electron microscopy study of meteoritic and terrestrial nano-diamonds, Geochim. et Cosmochim. Acta, Vol. no. 60, p. 4853.

    Article  ADS  Google Scholar 

  • Draine, B.T. (1989) On the interpretation of the λ2175Ã… feature, in Interstellar Dust, L.J. Allamandola and A.G.G.M. Tielens (eds.), Kluwer Academic Publishers, Dordrecht, p. 313.

    Chapter  Google Scholar 

  • Duley, W. and Williams, D. (1981) The infrared spectrum of interstellar dust — Surface functional groups on carbon, Month. Not. Roy. Astron. Soc., Vol. no. 196, p. 269.

    ADS  Google Scholar 

  • Duley, W.W., Jones, A.P., and Williams, D.A. 1989, Month. Not. Roy. Astron. Soc., Hydrogenated amorphous carbon-coated silicate particles as a source of interstellar extinction, Vol. no. 236, p. 709.

    Google Scholar 

  • Dwek, E. et al. (1997) Detection and characterization of cold interstellar dust and polycyclic aromatic hydrocarbon emission from COBE observations, Astrophys. J., Vol. no. 475, p. 565.

    Article  ADS  Google Scholar 

  • Ehrenfreund, P., Robert, F., d’Hendecourt, L. and Behar, F. (1991) Comparison of interstellar and meteoritic organic matter at 3.4 microns, Astron. Astrophys., Vol. no. 252, p. 712.

    ADS  Google Scholar 

  • Fitzpatrick, E.L. and Massa, D. (1986) An analysis of the shapes of ultraviolet extinction curves. I The 2175Ã… bump, Astrophys. J., Vol. no. 307, p. 286.

    Article  ADS  Google Scholar 

  • Fitzpatrick, E.L. and Massa, D. (1988) An analysis of the shapes of ultraviolet extinction curves. II The far-uv extinction, Astrophys. J., Vol. no. 328, p. 734.

    Article  ADS  Google Scholar 

  • Freivogel, P., Fulara, J. and Maier, J.P. (1994) Highly unsaturated hydrocarbons as potential carriers of some diffuse interstellar bands, Astrophys. J., Vol. no. 431, p. L151.

    Article  ADS  Google Scholar 

  • Fulara, J., Lessen, D., Freivogel, P. and Maier, J.P. (1993) Laboratory evidence for highly unsaturated hydrocarbons as carriers of some of the diffuse interstellar bands, Nature, Vol. no. 366, p. 439.

    Article  ADS  Google Scholar 

  • Grevesse, N., Noels, A. 1993 Cosmic abundances of the elements, in Origin and Evolution of the Elements, N. Prantzos, E. Vangioni-Flam and M. Casse (eds.), Cambridge Univ. Press, Cambridge, p. 15.

    Google Scholar 

  • Harris, P.J.F., Tsang, S.C., Claridge, J.B. and Green, M.L.H. (1994) High-resolution electron microscopy studies of a microporons carbon produced by arc-evaporation, J. Chem. Soc. Earaday Trans., Vol. no. 90, p. 2799.

    Article  Google Scholar 

  • Heidenreich, R.D., Hess, W.M. and Ban, L.L. (1968) A test object and criteria for high resolution electron microscopy, J. Appl. Cryst., Vol. no. 1, p. 1.

    Article  Google Scholar 

  • Henning, Th., Klein, R., Launhardt, R., Lemke, D. and Pfau, W. (1998) The molecular cloud core M17-North: ISO spectroscopy and IR/mm continuum mapping, Astron. Astrophys., in press.

    Google Scholar 

  • Herbig, G.H. (1995) The diffuse interstellar bands, Ann. Rev. Astron. Astrophys., Vo. no. 33, p. 19.

    Article  ADS  Google Scholar 

  • Hess, W.M. and Herd, C.R. (1993) Microstructure, morphology and general physical properties, in Carbon Black, J.-B. Donnet, R.C. Bansal and M.-J. Wang (eds.), Marcel Dekker Inc., New York, p. 89.

    Google Scholar 

  • Huffman, D.R. (1988) Methods and difficulties in laboratory studies of cosmic dust analogues, in Experiments on Cosmic Dust Analogues, E. Bussoletti, C. Fusco and G. Longo (eds.), Kluwer Academic Publishers, Dordrecht, p. 25.

    Chapter  Google Scholar 

  • Huss, G.R. and Lewis, R.S. (1995) Presolar diamond, SiC, and graphite in primitive chondrites: Abundances as a function of meteorite class and petrologic type, Geochim. et Cosmochim. Acta, Vol. no. 59, p. 115.

    Article  ADS  Google Scholar 

  • Iijima, S. (1991) Helical microtubules of graphitic carbon, Nature, Vol. no. 354, p. 56.

    Article  ADS  Google Scholar 

  • Irvine, W.M. et al. (1996) Spectroscopic evidence for interstellar ices in comet Hyakutake, Nature, Vol. no. 383, p. 418.

    Article  ADS  Google Scholar 

  • Jäger, C, Mutschke, H. and Henning, Th. (1998) Optical properties of carbonaceous dust analogues, Astron. Astrophys., Vol. no. 332, p. 291.

    ADS  Google Scholar 

  • Jäger, C. (1997) Experimentelle Untersuchungen zur Kohlenstoffkomponente des kosmischen Staubes, PhD thesis, University of Jena.

    Google Scholar 

  • Joblin, C, Lèger, A., and Martin, P. 1992, Contribution of polycyclic aromatic hydrocarbon molecules to the interstellar extinction curve, Astrophys. J., Vol. no. 393, p. L79.

    Article  ADS  Google Scholar 

  • Joblin, C, d’Hendecourt, L., Léger, A. and Défourneau, D. (1994) Infrared spectroscopy of gas-phase PAH molecules. I. Role of the physical environment, Astron. Astrophys., Vol. no. 281, p. 923.

    ADS  Google Scholar 

  • Joblin, C, Boissel, P., Léger, A., d’Hendecourt, L. and Défourneau, D. (1995) Infrared spectroscopy of gas-phase PAH molecules. II. Role of the temperature, Astron. Astrophys., Vol. no. 299, p. 835.

    ADS  Google Scholar 

  • Kerridge, J.F., Chang, S. and Shipp, R. (1988) Deuterium exchange during aciddemineralisation, Geochim. et Cosmochim. Acta, Vol. no. 52, p. 2251.

    Article  ADS  Google Scholar 

  • Kerridge, J.F. 1989 Interstellar molecules in meteorites, in Interstellar Dust, L.J. Allamandola and A.G.G.M. Tielens (eds.), D. Reidel Publ. Co., Dordrecht, p. 383.

    Chapter  Google Scholar 

  • Kissel, J. et al. (1986a) Composition of comet Halley dust particles from Giotto observations, Nature, Vol. no. 321, p. 336.

    Article  ADS  Google Scholar 

  • Kissel, J. et al. (1986b) Composition of comet Halley dust particles from Vega observations, Nature, Vol. no. 321, p. 280.

    Article  ADS  Google Scholar 

  • Koike, C, Hasegawa, H., Manabe, A. (1980) Extinction coefficients of amorphous carbon grains from 2100Ã… to 340 microns, Astrophys. Space Sc., Vol. no. 67, p. 495.

    Article  ADS  Google Scholar 

  • Ledoux, G., Ehbrecht, M., Guillois, O., Huisken, F., Kohn, B., Laguna, M.A., Nenner, I., Paillard, V., Papoular, R., Porterat, D., and Reynaud, C. (1998) Silicon as a candidate carrier for ERE, Astron. Astrophys., Vol. no. 333, p. L39.

    ADS  Google Scholar 

  • Léger A., Puget, J.L. (1984) Identification of the ‘unidentified’ IR emission features of interstellar dust?, Astron. Astrophys., Vol. no. 137, p. L5.

    ADS  Google Scholar 

  • Li, A. and Greenberg, J.M. (1997) A unified model of interstellar dust, Astron. Astrophys., Vol. no. 322, p. 566.

    ADS  Google Scholar 

  • Maier, J.P. (1997) Electronic spectroscopy of carbon chains, Chctn. Soc. Rev., Vol. no. 24, p. 21.

    Article  Google Scholar 

  • McCarthy, M.C., Travers, M.J., Kóvacs, A., Gottlieb, C.A. and Thaddeus, P. (1997) Eight new carbon chain molecules, Astrophys. J. Supl. Series, Vol. no. 113, p. 105.

    Article  ADS  Google Scholar 

  • Mennella, V., Colangeli, L., Bussoletti, E., Monaco, G., Palumbo, P. and Rotundi, A. (1995) On the electronic structure of small carbon grains of astrophysical interest, Astrophys. J. Suppl. Series, Vol. no. 100, p. 149.

    Article  ADS  Google Scholar 

  • Mennella, V., Colangeli, L., Blanco, A., Bussoletti, E., Fonti, S., Palumbo, P. and Mertins, H.C. (1995a) Dehydrogenation study of cosmic carbon analogue grains, Astrophys. J., Vol. no. 444, p. 288.

    Article  ADS  Google Scholar 

  • Michel, B., Henning, Th., Kreibig, U. and Jäger, C. (1998) Optical extinction by spherical carbonaceous particles, Carbon, submitted.

    Google Scholar 

  • Mumma, M.J. (1996) Hyakutake’s interstellar ices, News and Views, Nature, Vol. no. 383, p. 581.

    Article  Google Scholar 

  • Mumma, M.J. (1997) Organic volatiles in comets: Their relation to interstellar ices and solar nebular material, in From Stardust to Planetesimals, Y. J. Pendleton and A.G.G.M. Tielens (eds.), ASP Conference Series 122, p. 369.

    Google Scholar 

  • Ott, U. (1993) Physical and isotopic properties of surviving interstellar carbon phases, in Protostars and Planets III, E.H. Levy and J.I. Lunine (eds.), The University of Arizona Press, Tucson, p. 883.

    Google Scholar 

  • Papoular, R., Conard, J., Giuliano, M., Kister, J. and Mille, G. (1989) A coal model for the carriers of the unidentified IR bands, Astron. Astrophys., Vol. no. 217, p. 204.

    ADS  Google Scholar 

  • Papoular, R., Breton, J., Gensterblum, G. Nenner, I., Papoular, R.J. and Pireaux, J.-J. (1993) The vis/UV spectrum of coals and the interstellar extinction curve, Astron. Astrophys., Vol. no. 270, p. L5.

    ADS  Google Scholar 

  • Paret, V., Sadki, A., Bounouh, Y., Alameh, R., Naud, C., Zarrabian, M., Seignac, A., Turban, G. and Thèye, M.L. (1998) Optical investigations of the microstructure of hydrogenated amorphous carbon films, J. Non. Cryst. Sol., in press.

    Google Scholar 

  • Richter, S., Ott, U. and Begeinann, F. (1998), Nature, Vol. no. 391, p. 261.

    Article  ADS  Google Scholar 

  • Robertson, J. and O’Reilly, E.P. (1987) Electronic and atomic structure of amorphous carbon, Phys. Rev. B, Vol. no. 35, p. 2946.

    Article  ADS  Google Scholar 

  • Robertson, J. (1992) Hard amorphous (diamond-like) carbons, Prog. Solid St. Chem., Vol. no. 21, p. 199.

    Article  Google Scholar 

  • Rotundi, A., Rietmeijer, F.J.M., Colangeli, L., Mennella, V., Palumbo, P. and Bussolett, E. (1998) Identification of carbon forms in soot materials of astrophysical interest, Astron. Astrophys., Vol. no. 329, p. 1087.

    ADS  Google Scholar 

  • Rouleau, F., Henning, Th. and Stognienko, R. (1997) Constraints on the properties of the 2175Ã… interstellar feature carrier, Astron. Astrophys., Vol. no. 322, p. 633.

    ADS  Google Scholar 

  • Sakata, A., Wada, S., Okutsu, Y., Shintani, H. and Nakada, Y. (1983) Does a 2200Ã… hump observed in an artificial carbonaceous composite account for UV interstellar extinction?, Nature, 301, p. 493.

    Article  ADS  Google Scholar 

  • Sakata, A., Wada, S., Tokunaga, A.T. and Narisawa, T. (1995) Comparison of the absorption curves of soots, pitch samples and QCCs to the interstellar extinction curve, Planet. Space Sci., Vol. no. 43, p. 1223.

    Article  ADS  Google Scholar 

  • Salama, F. 1996 Low temperature spectroscopy: From ground to space, in Low Temperature Molecular Spectroscopy, R. Fausto (ed.), Kluwer Academic Publishers, Dordrecht, p. 169.

    Chapter  Google Scholar 

  • Salama, F., Bakes, E.L.O., Allamandola, L.J. and Tielens, A.G.G.M. (1996) Assessment of the polycyclic aromatic hydrocarbon—Diffuse interstellar band proposal, Astrophys. J., Vol. no. 458, p. 621.

    Article  ADS  Google Scholar 

  • Sarre, P.J. (1991), Nature, Vol. no. 351, p. 53.

    Article  ADS  Google Scholar 

  • Saykally, R.J. 1993, in Astronomical Infrared Spectroscopy: Future Observational Directions, S. Kwok (ed.), ASP Conf. Ser. 41, p. 233.

    Google Scholar 

  • Schlemmer, S., Cook, D.J., Harrison, J.A., Wurfel, B., Chapman, W. and Saykally, R.J. (1994) The unidentified interstellar infrared bands: PAHs as carriers?, Science, Vol. no. 265, p. 1686.

    Article  ADS  Google Scholar 

  • Schnaiter, M., Mutschke, H., Dorschner, J., Henning, Th. and Salama, F. (1998) Matrixisolated nano-sized soot grains as an analogue for the 217.5 nm feature carrier, Astrophys. Journal, Vol. no. 498, p. 486.

    Article  ADS  Google Scholar 

  • Snow, T.P., Witt, A.N. 1995 The interstellar carbon budget and the role of carbon in dust and large molecules, Science, Vol. no. 270, p. 1455.

    Article  ADS  Google Scholar 

  • Thaddeus, P., Vrtilek, J.M. and Gottlieb, C.A. (1985) Laboratory and astronomical identification of cyclopropenylidene, C3H2, Astrophys. J., Vol. no. 299, p. 63.

    Article  ADS  Google Scholar 

  • van Dishoeck, E. et al. (1996) A search for interstellar gas-phase CO2 gas: solid state abundance ratios, Astron. Astrophys., Vol. no. 315, p. L349.

    ADS  Google Scholar 

  • van Dishoeck, E. (1997) Production of organic molecules in space, in The Origin and Early Evolution of Life, Commentarii, Vol. no. IV–3, Vatican City Press, p. 101.

    Google Scholar 

  • Witt, A.N. (1989) Visible/UV scattering by interstellar dust, in Interstellar Dust, L.J. Allamandola and A.G.G.M. Tielens (eds.), Kluwer Academic Publishers, Dordrecht, p. 87.

    Chapter  Google Scholar 

  • Yorke, H.W. and Henning, Th. (1994) Opacity problems in protostellar objects, in Molecules in the Stellar Environment, U.G. Jørgensen (ed.), Springer-Verlag, Berlin, p. 186.

    Chapter  Google Scholar 

  • Zhang, K., Guo, B., Colarusso, P. and Bernath, P.F. (1996) Far-infrared emission spectra of selected gas-phase PAHs: Spectroscopic fingerprints, Science, Vo. no. 274, p. 582.

    Article  ADS  Google Scholar 

  • Zinner, E., Amari, S., Wopenka, B. and Lewis, R.S. (1995) Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains in Murchison, Meteoritics, Vol. no. 30, p. 209.

    ADS  Google Scholar 

  • Ziurys, L.M., Barclay, W.L., Jr., Anderson, M.A., Fletcher, D.A. and Lamb, J.W. (1994) A millimeter/submillimeter spectrometer for high resolution studies of transient molecules, Rev. Sci. Instr., Vol. no. 65, p. 1517.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Henning, T., Schnaiter, M. (1999). Carbon - From Space to Laboratory. In: Ehrenfreund, P., Krafft, C., Kochan, H., Pirronello, V. (eds) Laboratory Astrophysics and Space Research. Astrophysics and Space Science Library, vol 236. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4728-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4728-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5988-6

  • Online ISBN: 978-94-011-4728-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics