Skip to main content

Toward a Vortex Method Simulation of Non-Equilibrium Turbulent Flows

  • Chapter
Modeling Complex Turbulent Flows

Part of the book series: ICASE/LaRC Interdisciplinary Series in Science and Engineering ((ICAS,volume 7))

  • 564 Accesses

Abstract

Many of the most important physical processes associated with turbulent motion are best characterized in terms of the dynamics of the vorticity field. Two obvious examples include the action of vortex stretching in sending energy to small dissipative scales, and the self-replication mechanism by which quasi-streamwise vortices are produced adjacent to solid boundaries. The latter process maintains the Reynolds shear stress by forcing fluid ejections and sweeps (Bernard et al., 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernard, P. S., 1995. “A deterministic vortex sheet method for boundary layer flow,” J. Comput. Phys. 117, pp. 132–145.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Bernard P. S., Thomas J. M., and Handler, R. A., 1993. “Vortex dynamics and the production of Reynolds stress,” J. Fluid Mech. 253, pp. 385–419.

    Article  ADS  MATH  Google Scholar 

  • Brooke, J. W. and Hanratty, T. J., 1993. “Origin of turbulence-producing eddies in a channel flow,” Phys. Fluids A 5, pp. 1011–1022.

    Article  ADS  MATH  Google Scholar 

  • Chesnakas, C. J. and Simpson, R. L., 1994. “Full three-dimensional measurements of the cross-flow separation region of a 6:1 prolate spheroid,” Exp. Fluids 17, pp. 68–74.

    Article  Google Scholar 

  • Chorin, A. J., 1973. “Numerical study of slightly viscous flow,” J. Fluid Mech. 57, pp. 785–796.

    Article  MathSciNet  ADS  Google Scholar 

  • Chorin, A. J., 1982. “The evolution of a turbulent vortex,” Comm. Math. Phys. 83, pp. 517–535.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chorin, A. J., 1993. “Hairpin removal in vortex interactions II,” J. Comput. Phys. 107, pp. 1–9.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Chorin, A. J., 1994. Vorticity and Turbulence, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Cottet, G. H. and Mas-Gallic, S., 1990. “A particle method to solve the Navier-Stokes system,” Numer. Math. 57, pp. 805–827.

    Article  MathSciNet  MATH  Google Scholar 

  • Fishelov, D., 1990. “A new vortex scheme for viscous flows,” J. Comput Phys. 86, pp. 211–224.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Greengard, L. and Rokhlin, V., 1987. “A fast algorithm for particle simulations,” J. Comput. Phys. 73, pp. 325–348.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Head, M. R. and Bandyopadhyay, P., 1981. “New aspects of turbulent boundary layer structure,” J. Fluid Mech. 107, pp. 297–338.

    Article  ADS  Google Scholar 

  • Hess, J. L. and Smith, A. M. O., 1967. “Calculation of potential flow about arbitrary bodies,” Prog. Aero. Sci. 8, pp. 1–138.

    Article  MATH  Google Scholar 

  • Hess, J. L., 1990. “Panel methods in computational fluid dynamics,” Ann. Rev. Fluid Mech. 22, pp. 255–274.

    Article  ADS  Google Scholar 

  • Kim J., Moin P., and Moser, R. D., 1987. “Turbulence statistics in fully-developed channel flow at low Reynolds number,” J. Fluid Mech. 177, pp. 133–166.

    Article  ADS  MATH  Google Scholar 

  • Leonard, A., 1975. “Numerical simulation of interacting, three-dimensional vortex filaments,” Lec. Notes in Phys. 35, pp. 245–250.

    Article  ADS  Google Scholar 

  • Miyake Y., Ushiro R., and Morikawa, T., 1997. “The regeneration of quasi-streamwise vortices in the near-wall region,” JSME Int’l J. Ser. B-Fluids Thermal Engrg. 40, pp. 257–264.

    Article  ADS  Google Scholar 

  • Ogami, Y. and Akamatsu, T., 1990. “Viscous flow simulation using the discrete vortex model — the diffusion velocity method,” Computers and Fluids 19, pp. 433–441.

    Article  Google Scholar 

  • Puckett, E. G., 1993. “Vortex methods: an introduction and survey of selected research topics,” in Incompressible computational fluid dynamics: Trends and advances, edited by M. D. Gunzburger and R. A. Nicolaides, Cambridge University Press, Cambridge, pp. 335–407.

    Chapter  Google Scholar 

  • Rossi, L. F., 1995. “convergent,” SIAM J. Sci. Comp. 17, pp. 370–388.

    Article  Google Scholar 

  • Russo, G., 1993. “A deterministic vortex method for the Navier-Stokes equations,” J. Comp. Phys. 108, pp. 84–94.

    Article  ADS  MATH  Google Scholar 

  • Shankar, S. and van Dommelen, L., 1996. “A new diffusion procedure for vortex methods,” J. Comput Phys. 127, pp. 88–109.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Speziale, C. G., 1991. “Analytical methods for the development of Reynolds-stress closures in turbulence,” Annu. Rev. Fluid Mech. 23, pp. 107–157.

    Article  MathSciNet  ADS  Google Scholar 

  • Strickland, J. H., 1994. “A prediction method for unsteady axisymmetric flow over parachutes,” J. Aircraft 31, pp. 637–643.

    Article  Google Scholar 

  • Strickland, J. H., 1991. Maven simulation videotape. Sandia National Laboratories Video Services.

    Google Scholar 

  • Strickland, J. H. and Amos, D. E., 1992. “A fast solver for systems of axisymmetric ring vortices,” AIAA J. 30, pp. 737–746.

    Article  ADS  MATH  Google Scholar 

  • Strickland, J. and Bray, R. S., 1994. “A three-dimensional fast solver for arbitrary vorton distributions,” Report SAND93-1641, Sandia National Laboratory.

    Google Scholar 

  • Winckelmans G. S., Salmon J. K., Leonard A., and Warren, M. S., 1995. “Three-dimensional vortex particle and panel methods: fast tree-code solvers with active error control for arbitrary distributions/geometries,” Proc. Forum on Vortex Methods for Engineering Applications, Albuquerque, NM, pp. 23–43.

    Google Scholar 

  • Winckelmans G. S., Salmon J. K., Warren M. S., Leonard A., and Jodoin, B., 1996. “Application of fast parallel and sequential tree codes to computing three-dimensional flows with the vortex element and boundary element methods,” Vortex Flows and Related Numerical Methods II, ESAIM: Proceedings, Vol. 1, pp. 225–240, http://www.emath.fr/proc/Vol.l/.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bernard, P.S. (1999). Toward a Vortex Method Simulation of Non-Equilibrium Turbulent Flows. In: Salas, M.D., Hefner, J.N., Sakell, L. (eds) Modeling Complex Turbulent Flows. ICASE/LaRC Interdisciplinary Series in Science and Engineering, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4724-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4724-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5986-2

  • Online ISBN: 978-94-011-4724-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics