Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 105))

Abstract

This paper is about Information Geometry, a relatively new subject within mathematical statistics that attempts to study the problem of inference by using tools from modern differential geometry. This paper provides an overview of some of the achievements and possible future applications of this subject to physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. S.-i. Amari, Differential-Geometrical Methods in Statistics, vol. 28 of Lecture Notes in Statistics, Springer-Veriag, 1985.

    Google Scholar 

  2. C. Rodriguez, “The metrics induced by the kullback number,” In Maximum Entropy and Bayesian Methods Garching, Germany 1998, J. Skilling, ed., Kluwer Academic Publishers, 1989.

    Google Scholar 

  3. D. S. R.F. Baierlein and J. Wheeler, “Three-dimensional geometry as carrier of information about time,” Phys. Rev., pp. 1864–1865, 1962.

    Google Scholar 

  4. T. Jacobson, “Thermodynamics of spacetime: The einstein equation of state,” tech. rep., xxx.lanl.gov/abs/gr-qc/9504004, 1995.

    Google Scholar 

  5. D. Hestenes, Space-Time Algebra, Gordon and Breach, N.Y., 1966.

    MATH  Google Scholar 

  6. I. Ibragimov and R. Has’minskii, Statistical Estimation, vol. 16 of Applications of Mathematics, Springer-Verlag, 1981.

    Google Scholar 

  7. D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculas. D. Reidel, 1984. For links to online resources on Clifford algebra check,.

    Google Scholar 

  8. E. Jaynes, “Information theory and statistical mechanics,” Phys. Rev., 106, p. 620, 1957. Part II; ibid, vol 108, 171.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Rodriguez, “Entropic priors,” tech. rep., omega.albany.edu:8008/entpriors.ps, Oct. 1991.

    Google Scholar 

  10. A. Zellner, “Past and reacent results on maximal data information priors,” tech. rep., H.G.B. Alexander Reseach Foundation. Graduate Shool of Business, University of Chicago, 1995.

    Google Scholar 

  11. B. Dubrovin, A. Fomenko, and S. Novikov, Modern Geometry-Methods and Applications, Part-I, vol. GTM 93 of Graduate Texts in Mathematics, Springer-Verlag, 1984.

    Google Scholar 

  12. C Rodríguez, “Objective bayesianism and geometry,” in Maximum Entropy and Bayesian Methods Garching, Germany 1998, P. F. Fougère, ed., Kluwer Academic Publishers, 1990.

    Google Scholar 

  13. C. Rodríguez, “Bayesian robustness: A new look from geometry,” in Maximum Entropy and Bayesian Methods Garching, Germany 1998, G. Heidbreder, ed., pp. 87–96, Kluwer Academic Publishers, 1996. (since Nov. 1993) in omega.albany.edu:8008/robust.ps.

    Google Scholar 

  14. D. Bleecker, Gauge Theory and Variational Principles, Addison-Wesley, 1981.

    Google Scholar 

  15. C. Rodríguez, “From euclid to entropy,” in Maximum Entropy and Bayesian Methods Garching, Germany 1998, W. T. Grandy, Jr., ed., Kluwer Academic Publishers. omega.albany.edu:8008/euclid.ps, 1991. omega.albany.edu:8008/euclid.ps.

    Google Scholar 

  16. J. Bekenstein Phys. Rev. D, 7, p. 2333, 1973.

    Article  MathSciNet  Google Scholar 

  17. S. Hawking Comm. Math. Phys., 43, p. 199, 1975.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rodriguez, C.C. (1999). Are We Cruising a Hypothesis Space?. In: von der Linden, W., Dose, V., Fischer, R., Preuss, R. (eds) Maximum Entropy and Bayesian Methods Garching, Germany 1998. Fundamental Theories of Physics, vol 105. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4710-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4710-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5982-4

  • Online ISBN: 978-94-011-4710-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics