Skip to main content

Part of the book series: Solid Mechanics and its Applications ((SMIA,volume 71))

Abstract

The fracture process in brittle-matrix composites and quasi-brittle materials, such as concrete, rocks and ceramics, is always associated with the formation of a very narrow band where nonlinear deformation occurs. This localized band, or process zone, arises and evolves during the loading process leading to the real fracture. It typically consists of a microcracking region, near the tip of the macrocracks, and a bridging region, along the wake of the macrocracks, where the secondary phases (e.g. grains, aggregates, fibers and particles) control the separation process. The nonlinear mechanisms which take place in the process zone, consisting of coalescing and branching of the microcracks, in debonding, yielding, sliding and pulling-out of the reinforcing phases, can dissipate a considerable amount of energy so that additional external work is required for sustained growth of the macrocrack. As a consequence the fracture toughness of the material is improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.6. References

  1. Karihaloo, B.L.: Fracture Mechanics and Structural Concrete, Longman, Harlow, 1995.

    Google Scholar 

  2. Zok, F., and Horn, C.L.: Large scale bridging in brittle-matrix composites, Acta Metallurgica Materialia 38 (1990), 1895–1904.

    Article  Google Scholar 

  3. Swanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y.W., and Hockey, B.J.: Crack interface grain bridging as a fracture resistance mechanism in ceramics: I, experimental study on alumina, J. American Ceramic Society 70 (1987), 279–289.

    Article  Google Scholar 

  4. Barr, B., Gettu, R., Al-Oraimi, S.K.A., and Bryars, L.S.: Toughness measurements — the need to think again, Cement and Concrete Composites 18 (1996), 281–297.

    Article  Google Scholar 

  5. Barenblatt, G.I.: The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks, J. Applied Mathematics and Mechanics 23 (1959), 622–636.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture, in H.L. Dryden and T. von Karman (eds.), Advanced in Applied Mechanics, Academic Press, New York, 1962, pp. 55–129.

    Google Scholar 

  7. Dugdale, D.S.: Yielding of steel sheets containing slits, J. Mechanics Physics Solids 8 (1969), 100–104.

    Article  ADS  Google Scholar 

  8. Ballarini, R., and Muju, S.: Stability analysis of bridged cracks in brittle-matrix composites, J. Engineering Gas Turbines Power 115 (1993), 127–138.

    Article  Google Scholar 

  9. Tada, H., Paris, P.C., and Irwin, G.: The Stress Analysis of Cracks Handbook, Paris Productions Incorporated, St. Louis, Missouri, 1985.

    Google Scholar 

  10. Sih, G.C., and Liebowitz, H.: Mathematical theories of brittle fracture, in H. Liebovitz (ed.), Fracture, vol.11. Academic, New York, 1968, pp. 67–190.

    Google Scholar 

  11. Luo, H. A., and Ballarini, R.: The effects of anisotropy on the nonlinear behavior of bridged cracks in long strips, J. Mechanics Physics Solids 42 (1994), 141–157.

    Article  ADS  MATH  Google Scholar 

  12. Burakiewicz A.: Testing of fiber bond strength in cement matrix, in Swamy (ed.), Testing and Test Methods of Fiber Cement Composites, The Construction Press LTD, Lancaster, U.K., 1978, pp. 355–369.

    Google Scholar 

  13. Naaman, A.E., and Shah, S.P.: Pull-out mechanism in steel fiber-reinforced concrete, J. Structural Engineering 102 (1976), 1537–1548.

    Google Scholar 

  14. Ouyang, C., Pacios, A., and Shah, S.P.: Pullout of inclined fibers from cementitious matrix, J. Engineering Mechanics 120 (1994), 2641–2659.

    Article  Google Scholar 

  15. Li, V.C., Wang, Y., and Backers, S.: A micromechanical model of tension-softening and bridging toughening of short random fiber reinforced brittle matrix composites, J. Mechanics Physics Solids 39 (1991), 607–625.

    Article  ADS  Google Scholar 

  16. Marshall, D.B., Cox, B.N., and Evans, A.G.: The mechanics of matrix cracking in brittle-matrix fiber composites, Acta Metallurgica Materialia 33 (1985), 2013–2021.

    Google Scholar 

  17. Cox, B.N., and Marshall, D.B.: The determination of crack bridging forces, Int. J. Fracture 49 (1991), 159–176.

    Google Scholar 

  18. Rodel, J., Kelly, J.F., and Lawn, B.R.: In situ measurements of bridged crack interfaces in the scanning electron microscope, J. American Ceramic Society 73 (1990), 3313–3318.

    Article  Google Scholar 

  19. Fett, T., Munz, D., Yu, C-T, and Kobayashi, A.S.: Determination of bridging stresses in reinforced Al2O3, J. American Ceramic Society 77 (1994), 3267–3269.

    Article  Google Scholar 

  20. Li, V.C., and Ward, R.J.: A novel testing technique for post-peak tensile behavior of cementitious materials, in Mihashi et al. (eds.), Fracture Toughness and Fracture Energy, Balkema, Rotterdam, 1989, pp. 183–195.

    Google Scholar 

  21. Guo, Z.K., Kobayashi, A.S., and Hawkins, N.M.: Further studies on fracture process zone for Mode I concrete fracture, Engineering Fracture Mechanics 46 (1993), 1041–1049.

    Article  Google Scholar 

  22. Wittman, F.H., Rokugo, K., Bruhwiler, E., Mihashi, H. and Simonin, P.: Fracture energy and strain softening of concrete as determined by means of compact tension specimens, Materials and Structures 21(1988),21–32.

    Article  Google Scholar 

  23. Guinea, G.V., Planas, J., and Elices, M.: A general bilinear fit for the softening curve of concrete, Materials and Structures 27 (1994), 99–105.

    Article  Google Scholar 

  24. Bao, G., and Suo, Z.: Remarks of crack-bridging concepts, Applied Mechanics Review 24 (1992), 355–366.

    Article  ADS  Google Scholar 

  25. Cox, B.N., and Marshall, D.B.: Concepts for bridged cracks in fracture and fatigue, Acta Metallurgica Materialia 42 (1994), 341–363.

    Article  Google Scholar 

  26. Willis, J.R.: A comparison of the fracture criteria of Griffith and Barenblatt, J. Mechanics Physics Solids 15 (1967), 151–162.

    Article  ADS  Google Scholar 

  27. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks, J. Applied Mechanics 35 (1968), 379–386.

    Article  ADS  Google Scholar 

  28. Griffith, A.A.: The phenomena of rupture and flow in solids, Philosophical Transactions Royal Society London A221 (1921), 163–198.

    ADS  Google Scholar 

  29. Bilby, B.A., Cottrell, A.H., and Swinden, K.H.: The spread of plastic yield from a notch, Proceedings Royal Society London A272 (1963), 304–314.

    Article  ADS  Google Scholar 

  30. Hillerborg, A., Modeer, M., and Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement and Concrete Research 6 (1976), 773–782.

    Article  Google Scholar 

  31. Hillerborg, A.: Analysis of a single crack, in F.H. Wittmann (ed.), Fracture Mechanics of Concrete, Elsevier Science, Amsterdam, 1983, pp. 223–249.

    Google Scholar 

  32. Carpinteri, A.: Cusp catastrophe interpretation of fracture instability, J. Mechanics Physics Solids 37 (1989), 567–582.

    Article  ADS  MATH  Google Scholar 

  33. Carpinteri, A.: Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics, Int. J. Solids and Structures 25 (1989), 407–429.

    Article  Google Scholar 

  34. Carpinteri, A., and Colombo, G.: Numerical analysis of catastrophic softening behaviour (snap-back instability), Computer and Structures 31 (1989), 607–673.

    Article  Google Scholar 

  35. Carpinteri, A.: Softening and snap-back instability in cohesive solids, Int. J. Numerical Methods in Engineering 28 (1989), 1521–1537.

    Article  ADS  Google Scholar 

  36. Carpinteri, A.: Size effects on strength, toughness and ductility, J. Engineering Mechanics 115 (1989), 1375–1392.

    Article  Google Scholar 

  37. Carpinteri, A.: Size-scale transition from ductile to brittle failure: structural response vs. crack growth resistance curve, Int. J. Fracture 51 (1991), 175–186.

    Google Scholar 

  38. Li, V.C., and Liang, E.: Fracture processes in concrete and fiber reinforced cementitious composites, J. Engineering Mechanics 112 (1986), 566–586.

    Article  Google Scholar 

  39. Hillerborg, A.: Analysis of fracture by means of the fictitious crack model, particularly for fibre reinforced concrete, Int. J. Cement Composites 2 (1989), 177–184.

    Google Scholar 

  40. Visalvanich, K., and Naaman, A.E.: Fracture model for fiber reinforced concrete, ACI Journal 80-14 (1983), 128–138.

    Google Scholar 

  41. Ballarini, R., Shah, S.P., and Keer, L.M.: Crack growth in cement-based composites, Engineering Fracture Mechanics 20 (1984), 433–445.

    Article  Google Scholar 

  42. Cotterell, B., Paramasivam, P., and Lam, K.Y.: Modeling the fracture of cementitious materials, Materials and Structures 25 (1992), 14–20.

    Article  Google Scholar 

  43. Comitè Euro-International du Beton: CEB-FIP Model Code 1990, CEB Bulletin d’Information, (1993), 213–214.

    Google Scholar 

  44. Sutcliffe, M.P.F., and Fleck, N.A.: Effect of geometry on compressive failure of notched composites, Int. J. Fracture 59 (1993), 115–132.

    Article  ADS  Google Scholar 

  45. Rice, J.R.: The Mechanics of Earthquake Rupture, in Dziewonski, A.M., and Boschi, E. (eds), Physics of the Earth’s Interior, Italian Physical Society/North Holland Publ. Co, 1980, pp. 555–649.

    Google Scholar 

  46. Connell, S.J., Zok, F.W., Du, Z.Z., and Suo, Z.: On the tensile properties of a fiber reinforced titanium matrix composite-II. Influence of notches and holes, Acta Metallurgica Materialia 42 (1994), 3451–3461.

    Article  Google Scholar 

  47. Ungsuwarungsri, T., and Knauss, W.G.: Nonlinear analysis of an equilibrium craze: part I—problem formulation and solution, J. Applied Mechanics 55 (1988), 44–51.

    Article  ADS  Google Scholar 

  48. Passaglia, E., Polymer 25 (1984), 145.

    Google Scholar 

  49. Rose, L.R.F.: Crack reinforcement by distributed springs, J. Mechanics Physics Solids 34 (1987), 383–405.

    Article  ADS  Google Scholar 

  50. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber reinforced ceramics, J. Mechanics Physics Solids 34 (1986), 167–189.

    Article  ADS  MATH  Google Scholar 

  51. Romualdi, J.P., and Batson, G.B.: Mechanics of crack arrest in concrete, J. Engineering Mechanics 89 (1963), 147–167.

    Google Scholar 

  52. Romualdi, J.P., and Batson, G.B.: Behavior of reinforced concrete beams with closely spaced reinforcement, J. of the ACI 60 (1963), 775–789.

    Google Scholar 

  53. Carpinteri, A.: A fracture mechanics model for reinforced concrete collapse, in Advanced Mechanics of Reinforced Concrete, Proc. of the IABSE Colloquium, Delft, 1981, pp. 17–31.

    Google Scholar 

  54. Carpinteri, A., Stability of fracturing process in r.c. beams: J. Structural Engineering 110 (1984), 544–558.

    Article  Google Scholar 

  55. Carpinteri, Al., and Carpinteri, An.: Hysteretic behavior of r.c. beams, J. Structural Engineering 110 (1984), 2173–2084.

    Google Scholar 

  56. Bosco, C., and Carpinteri, A.: Softening and snap-through behavior of reinforced elements, J. Engineering Mechanics 118 (1992), 1564–1577.

    Article  Google Scholar 

  57. Bosco, C., and Carpinteri, A.: Fracture behavior of beam cracked across reinforcement, Theoretical and Applied Fracture Mechanics 17 (1992), 61–68.

    Article  Google Scholar 

  58. Bosco, C., and Carpinteri, A.: Discontinuous constitutive response of brittle matrix fibrous composites, J. Mechanics Physics Solids 43 (1995), 261–274.

    Article  ADS  MATH  Google Scholar 

  59. Mc Carteney, L.N.: Mechanics of matrix cracking in brittle-matrix fibre-reinforced composites, Proceedings Royal Society London A409 (1987), 329–350.

    Article  ADS  Google Scholar 

  60. Erdogan, F., and Joseph, P.F.: Toughening of ceramics through crack bridging by ductile particles, J. American Ceramic Society 72 (1987), 262–270.

    Article  Google Scholar 

  61. Bao, G., and Zok, F.: On the strength of ductile particle reinforced brittle matrix composites, Acta Metallurgica Materialia 41 (1993), 3515–3524.

    Article  Google Scholar 

  62. Marshall, D.B., and Cox, B.N.: Tensile fracture of brittle matrix composites: influence of fiber strength, Acta Metallugica Materialia 35 (1987), 2607–2619.

    Article  Google Scholar 

  63. Cox, B.N.: Scaling for bridged cracks, Mechanics of Materials 15 (1993), 87–98.

    Article  ADS  Google Scholar 

  64. Cox, B.N.: Extrinsic factors in the mechanics of bridged cracks, Acta Metallurgica Materialia 39 (1991), 1189–1201.

    Article  Google Scholar 

  65. Cox, B.N., and Marshall, D.B.: Stable and unstable solutions for bridged cracks in various specimens, Acta Metallurgica Materialia 39 (1991), 579–589.

    Article  Google Scholar 

  66. Cox, B.N., and Lo, C.S.: Load ratio, notch, and scale effects for bridged cracks in fibrous composites, Acta Metallurgica Materialia 40 (1990), 69–80.

    Article  Google Scholar 

  67. Swanson, P.L., Fairbanks, C.J., Lawn, B.R., Mai, Y.W., and Hockey, B.J.: Crack interface grain bridging as a fracture resistance mechanism in ceramics: II, theoretical fracture mechanics model, J. American Ceramic Society 70 (1987), 289–294.

    Article  Google Scholar 

  68. Kendall, K., Clegg, W.J., and Gregory, R.D.: Growth of tied cracks: a model for polymer crazing, J. Material Science Letters 10 (1991), 671–674.

    Article  Google Scholar 

  69. Rose, L.R.F.: Influence of debonding on the efficiency of crack patching, Theoretical and Applied Fracture Mechanics 7 (1987), 125.

    Article  Google Scholar 

  70. Foote, R.M.L., Mai, Y.W., and Cotterell, B.: Crack growth resistance curves in strain-softening materials, J. Mechanics Physics Solids 34 (1986), 593–607.

    Article  ADS  Google Scholar 

  71. Jenq, Y.S., and Shah, S.P.: Two parameter fracture model for concrete, J. Engineering Mechanics 111 (1985), 1227–1241.

    Article  Google Scholar 

  72. Jenq, Y.S., and Shah, S.P.: Crack propagation in fiber-reinforced concrete, J. Structural Engineering 112 (1986), 19–34.

    Article  Google Scholar 

  73. Carpinteri, A., and Massabò, R.: Continuous versus discontinuous bridged crack model for fiber-reinforced materials in flexure, Int. J. Solids and Structures 34 (1997), 2321–2338.

    Article  MATH  Google Scholar 

  74. Carpinteri, A., and Massabò, R.: Reversal in the failure scaling transition of brittle matrix fibrous composites, J. Engineering Mechanics 123 (1997), 107–114.

    Article  Google Scholar 

  75. Carpinteri, A., and Massabò, R.: Bridged versus cohesive crack in the flexural behavior of brittle matrix composites, Int. J. Fracture 81 (1996), 125–145.

    Article  Google Scholar 

  76. Lu, T-J, and Hutchinson, J.W.: Role of fiber stitching in eliminating transverse fracture in crossply ceramic composites, J. American Ceramic Society 78 (1995), 251–253.

    Article  Google Scholar 

  77. Cox, B.N., Massabò, R., and Kedward, K.B.: Suppression of delaminations in curved structures by stitching, Composites: Part A 27A (1996), 1133–1138.

    Article  Google Scholar 

  78. Smith, E.: The size of the fully developed softening zone associated with a crack in a strain-softening material-I. A semi-infinite crack in a remotely loaded infinite solid, Int. J. Engineering Science 27 (1989), 301–307.

    Article  ADS  Google Scholar 

  79. Cottrell, A.H.: Mechanics of Fracture, in Tewksbury Symposium of Fracture, University of Melbourne, Australia, 1963, pp. 1–27.

    Google Scholar 

  80. Bache, H. H.: Fracture mechanisms in design of concrete and concrete structures, in F. Wittmann (ed.), Fracture Toughness and Fracture Energy of Concrete, Proc. Int. Conf., Lausanne, Switzerland, H., Elsevier, Amsterdam, 1987, pp. 577–586.

    Google Scholar 

  81. Carpinteri, A.: Interpretation of the Griffith instability as a bifurcation of the global equilibrium, in S.P. Shah (ed.), NATO Advanced Research Workshop on Application of Fracture Mechanics to Cementitious Composites, Martinus Nijhoff, 1985, pp. 287–316.

    Google Scholar 

  82. Buckingham, E.: Model experiments and the form of empirical equations, Transactions ASME 37 (1915), 263–296.

    Google Scholar 

  83. Carpinteri, A., and Massabò, R.: Fracture Instabilities and scale effects in brittle solids and brittle matrix fibrous composites, in J. Petit (ed.), Mechanisms and Mechanics of Damage and Failure, Chameleon Press, London, Vol.1, 1996, pp. 21–30.

    Google Scholar 

  84. Zhu, W., and Bartos, P.J.M.: Effects of combined fiber treatments and matrix modifications on toughness of aged GRC, Proc. of the 9th Congress of the GRCA, Copenhagen, (1993), 4/I-IX.

    Google Scholar 

  85. Levi, F., Bosco, C., and Debernardi, P.G.: Two aspects of the behavior of slightly reinforced structures, CEB Bulletin d’Information 185 (1988), 39–50.

    Google Scholar 

  86. Bosco, C., Carpinteri, A., and Debernardi, P.G.: Minimum reinforcement in high-strength concrete, J. Structural Engineering 116 (1990), 427–437.

    Article  Google Scholar 

  87. Jenkins, M.G., Kobayashi, A.S., White, K.W., and Bradt, R.C.: Crack initiation and arrest in a Sic whisker/Al2O3 matrix composite, J. American Ceramic Society 70 (1987), 393–395.

    Article  Google Scholar 

  88. Jamet, D., Gettu, R., Gopalaratnam, V.S., and Aguado, A.: Toughness of fiber-reinforced high-strength concrete from notched beam tests, in D.J. Steven et al. (eds.), Testing of Fiber Reinforced Concrete, SP-155 ACI, Detroit, 1995, pp. 23–39.

    Google Scholar 

  89. Tjiptobroto, P., and Hansen, W.: Tensile strain hardening and multiple cracking in high-performance cement-based composites containing discontinuous fibers, ACI Material Journal 90 (1993), 16–25.

    Google Scholar 

  90. Carpinteri, A.: Static and energetic fracture parameters for rocks and concretes, Materials and Structures 14 (1981), 151–162.

    Google Scholar 

  91. Carpinteri, A.: Notch sensitivity in fracture testing of aggregative materials, Engineering Fracture Mechanics 16 (1982), 467–481.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Massabò, R. (1999). The Bridged-Crack Model. In: Carpinteri, A. (eds) Nonlinear Crack Models for Nonmetallic Materials. Solid Mechanics and its Applications, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4700-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4700-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5977-0

  • Online ISBN: 978-94-011-4700-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics