Skip to main content

Calorimetry

  • Chapter
  • 290 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 534))

Abstract

The aim of Particle Physics is to answer the two following questions: what are the fundamental constituents of matter? and what are the fundamental forces that control their behaviour at the most basic level? Experimentally this involves the study of hard particle interactions, determining the identity of the resulting particles and measuring their momenta with as high a precision as possible. Some thirty years ago a single detection device, the bubble chamber, was sufficient to reconstruct the full event information. At the current high centre of mass energies no single detector can accomplish this even though the number of particles whose identity and momenta need to be determined is limited [electrons, muons, photons, single charged hadrons, jets of hadrons, b-jets, taus and missing transverse energy Et (v) ]. This leads to a familiar onion-like structure of present day high energy physics experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. Amaldi, Exptl. Tech. In High Energy Physics, p. 257, ed. T. Ferbel, Addison Wesley, 1987. Also in Phys. Scripta 23 (1981) 409.

    Google Scholar 

  2. C. W. Fabjan, Exptl. Tech. In High Energy Physics, p. 325,ed. T. Ferbel, Addison Wesley, 1987.

    Google Scholar 

  3. R. Wigmans, Ann. Rev. Nucl. And Part. Sci. 41 (1991) 133.

    Article  ADS  Google Scholar 

  4. C. W. Fabjan and R. Wigmans, CERN-EP/89-64 (1989).

    Google Scholar 

  5. T. S. Virdee, Proc. 2nd Intl. Conf. On Calorimetry in High Energy Physics, p3, Capri, 1991, ed. A Ereditato, World Scientific.

    Google Scholar 

  6. R. Wigmans, Proc. 2nd Intl. Conf. On Calorimetry in High Energy Physics, p24, Capri, 1991, ed. A Ereditato, World Scientific.

    Google Scholar 

  7. ATLAS Technical Design Reports: Liquid Argon Calorimeter, CERN/LHCC/96-?? (1996), Tile Calorimeter, CERN/LHCC/96-42 (1996), http://atlasinfo.cem.ch/Atlas/GROUPS/notes.html.

    Google Scholar 

  8. CMS Technical Design Reports, Electromagnetic Calorimeter, CERN/LHCC 97-33 (1977), Hadron Calorimeter, CERN/LHCC 97-31 (1997), http://cmsdoc.cern.ch/LHCC.html.

    Google Scholar 

  9. Review of Particle Physics, C. Caso et al., Euro. Phys. Journal C3 (1998) 1, http://pdg.lbl.gov/.

  10. D. Barney, private communication.

    Google Scholar 

  11. M. De Vincenzi et al., WA78, Nucl. Instr. and Meth., A243 (1986) 348.

    ADS  Google Scholar 

  12. D. Acosta et al., SPACAL, Nucl. Instr. and Meth., A294 (1990) 193.

    ADS  Google Scholar 

  13. T. Doke et al., Nucl. Instr. Meth., A237 (1985) 475.

    ADS  Google Scholar 

  14. D. J. Graham and C. Seez, CMS Note 1996/002 (1996).

    Google Scholar 

  15. D. Fournier and L. Serin, p. 291, 1995 European School of High Energy Physics, CERN 96-04, 1996, eds. N. Ellis and M. Neubert.

    Google Scholar 

  16. D. Groom, To appear in Proc. of Intl. Conf. On Calorimetry in High Energy Physics, Tucson, 1998.

    Google Scholar 

  17. R. Wigmans, Nucl. Instr. and Meth., A259 (1987) 389.

    ADS  Google Scholar 

  18. G. Drews et al., Nucl. Instr. and Meth., A290 (1990) 335 and H. Tiecke (ZEUS Calorimeter Group) Nucl. Instr. and Meth., A277 (1989) 42.

    ADS  Google Scholar 

  19. A. Beretvas et al., CMS TN/94-326 (1994).

    Google Scholar 

  20. R. Apsimon et al., Nucl. Instr. and Meth., A305 (1991) 331.

    ADS  Google Scholar 

  21. A. Annenkov et al., CMS NOTE 1998/041 and references therein.

    Google Scholar 

  22. G. Gratta et al., Ann. Rev. Nucl. Part. Sci. 44 (1994) 453.

    Article  ADS  Google Scholar 

  23. J. P. Peigneux et al., Nucl. Instr. and Meth., A378 (1996) 410.

    ADS  Google Scholar 

  24. E. Auffray et al., Nucl. Instr. and Meth., A412 (1998) 223.

    Google Scholar 

  25. F. Pauss, these proceedings.

    Google Scholar 

  26. M. A. Akrawy et al., Nucl. Instr. and Meth., A290 (1990) 76.

    ADS  Google Scholar 

  27. D. Fournier, Nucl. Instr. and Meth., A367 (1995) 5.

    ADS  Google Scholar 

  28. D. Schinzel, Proc. of Intl. Wire Chamber Conference, Vienna, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Virdee, T.S. (1999). Calorimetry. In: Ferbel, T. (eds) Techniques and Concepts of High Energy Physics X. NATO Science Series, vol 534. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4689-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4689-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5730-8

  • Online ISBN: 978-94-011-4689-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics