Skip to main content

Molecular Dynamics Studies of High Pressure Transformations and Structures

  • Chapter
High Pressure Molecular Science

Part of the book series: NATO Science Series ((NSSE,volume 358))

Abstract

The study of high-pressure transformations and the stability of dense materials has been an active area research for many decades. The change of the structure of a solid when pressurized has yielded many interesting new materials and many new phenomena such as insulator → metal transformations, important effects in high Tc superconductors, and pressure-induced amorphization that yields unique disordered materials. Ten years ago, the application of classical molecular dynamics techniques had already yielded results that provided important insight into materials under high pressure. This was made possible by the constant-pressure method developed by Anderson1 1 and by Parrinello and Rahman2,3 which allows the volume as well as the shape of the simulation cell to change. Another important aspect of these simulation methods was that systems could be studied at finite temperatures. These developments complemented the rapidly developing quantum mechanical methods being used in the solid state physics community to study the stability and structures of solids under pressure4,5. A major advance in the theoretical methods for the study of structural stability and dynamical properties of solids was made with the introduction of the Car-Parrinello method6 for ab initio molecular dynamics (AIMD). A primary advantage of this method is the fact that a interatomic potential is not a part of the input. The Car-Parrinello method allows the calculation of all of the properties that can be obtained in the classical MD technique but with the important feature that interatomic forces are obtained from a quantum mechanical calculation. The AIMD method has more recently been extended to include Parrinello-Rahman variable cell dynamics7,8 so this method has the capability to describe structural phase changes and stabilities from first-principles. Other variations of constant pressure MD have also been proposed and the basic ideas and capabilities are similar9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Anderson H.C. (1980) Molecular dynamics simulations at constant pressure and/or temperature, J. Chem. Phys. 72, 2384–2393.

    Article  Google Scholar 

  2. [2] Parrinello, M and Rahman (1980) A. Crystal structure and pair potentials: A molecular dynamics study, Phys. Rev. Lett. 45, 1196–1199.

    Article  CAS  Google Scholar 

  3. [3] Parrinello, M.and Rahman, A. (1981) Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52, 7182–7190.

    Article  CAS  Google Scholar 

  4. [4] Yin, M.T and Cohen, M.L. (1982) Theory of static structural properties, crystal stability and phase transformations: Applications to Si and Ge, Phys. Rev. B26, 5668–5687.

    Google Scholar 

  5. [5] Chang, K.J. and Cohen, M.L. (1985) Solid state phase transformations and soft modes in highly condensed Si, Phys. Rev. B31, 7819–7826.

    Google Scholar 

  6. [6] Car, R. and Parrinello, M. (1985) Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett., 55, 2471–247

    Article  CAS  Google Scholar 

  7. [7] Focher, P., Chiarotti, G.L., Bernasconi M., Tossati, E., and Parrinello, M. (1994) Structural phase transformations via first-principles simulation, Europhys. Lett. 26, 345–351.

    Article  CAS  Google Scholar 

  8. [8] Bernasconi, M., Chiarotti, G.L., Focher P., Scandolo, S., Tosatti, E. and Parrinello, M. (1995) First-principles-constant pressure molecular dynamics J. Phys. Chem. Solids, 56, 501–505.

    Article  CAS  Google Scholar 

  9. [9] Thomson K.T., Wentzcovitch, R.M. and Bukowinski, M.S. (1996) Science 274, 1880–1882.

    Article  CAS  Google Scholar 

  10. [10] Alder, B.J. and Wainwright, T.E. (1957) Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208–1209.

    Article  CAS  Google Scholar 

  11. [11] M. Sprik, (1996) in “Monte Carlo and Molecular Dynamics of Condensed Matter Systems”, edited by K. Binder and G. Ciccotti, SIF, Bologna.

    Google Scholar 

  12. [12] M.P. Allen and D.J. Tildesley, “Computer Simulation of Liquids”, Oxford Press, Oxford, 1987.

    Google Scholar 

  13. [13] Tse, J.S. and Klug, D.D. (1991) The structure and dynamics of silica polymorphs using a two-body effective potential model, J. Chem. Phys., 95, 9176–918

    Article  CAS  Google Scholar 

  14. [14] Sprik, M.R., Impey, R.W., and Klein, M.L. (1984) Second-order elastic constants for the Lennard-Jones solid, Phys. Rev. B29, 4368–4374.

    Google Scholar 

  15. [15] M. Born and K. Huang, “Dynamical theory of Crystal Lattices, Clarendon, Oxford, 1954.

    Google Scholar 

  16. [16] M.L. Klein, in “Molecular Dynamics Simulation of Statistical Mechanical Systems”, edited by G. Ciccotti and W.G. Hoover, North Holland, Amsterdam, 1986, p. 426.

    Google Scholar 

  17. [17] van Hove, L. (1954) Correlations in space and time and Born approximation scattering in systems of interacting particles, Phys. Rev. 95, 249–262.

    Article  Google Scholar 

  18. [18] Car, R. and Parrinello, M. (1988), in “Simple Molecular Systems at Very High Density”, Plenum, 1988, 455–476.

    Google Scholar 

  19. [19] C. Galli and M. Parrinello (1991), in Computer Simulation in Material Science, edited by M. Meyer and V. Pontikis, Kluwer Academic Publishers, Dortrecht, 283–304.

    Chapter  Google Scholar 

  20. [20] Remler, D.A. and Madden, P.A. (1990) Molecular dynamics without effective potentials via the Car-Parrinello approach, Mol. Phys. 70, 921–966.

    Article  CAS  Google Scholar 

  21. [21] Payne, M.C., Teter, M.P., Allan, D.C. (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64, 1045–1097.

    Article  CAS  Google Scholar 

  22. [22] Kresse G. and Furthmüller (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set Comput. Mat. Scie. 15–50

    Google Scholar 

  23. [23] Scandolo, S., Bernasconi, M. Chiarotti, G.L., Focher, P., and Tosatti, E. (1995) Pressure-induced transformation path of graphite to diamond, Phys. Rev. Lett. 74, 4015–4018.

    Article  CAS  Google Scholar 

  24. [24] Benoit, M., Bernasconi, M., Focher, P. and Parrinello, M. (1996) New high-pressure phase of ice, Phys. Rev. Lett. 76, 2934–2936.

    Article  CAS  Google Scholar 

  25. [25] Kresse G. and Hafner, J. (1993) Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B48, 13115–13118;(1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, ibid, B49, 14251-14269; Kresse, G. and Furthmuller, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B54, 11169-11186.

    Google Scholar 

  26. [26] Tse, J.S. and Klug, D.D. (1991) Mechanical Instability of α-quartz: a molecular dynamics study, Phys. Rev. Lett. 67, 3559–3562.

    Article  CAS  Google Scholar 

  27. [27] Tsuneyuki, S., Tsukada, M., Aoki, H., Matsui, Y. (1988) First-principles interatomic potential of silica applied to molecular dynamics, Phys. Rev. Lett. 61, 869–872.

    Article  CAS  Google Scholar 

  28. [28] van Beest, B.W.H., Kramer, G.J., van Santen, R.A. (1990) Force fields for silicas and aluminophosphates based on ab initio calculations, Phys. Rev. Lett. 64, 1955–1958.

    Article  Google Scholar 

  29. [29] Tse, J.S., and Klug, D.D. (1991) The structure and dynamics of silica polymorphs using a two-body effective potential model, J. Chem. Phys. 95, 9176–9185.

    Article  CAS  Google Scholar 

  30. [30] Tse, J.S. Klug, D.D., and Le Page, Y. (1992) Novel high pressure phase of silica, Phys. Rev. Lett. 69, 3647–3649.

    Article  CAS  Google Scholar 

  31. [31] Tse, J.S., Klug, D.D., and Le Page, Y. (1992) High pressure densification of amorphous silica, Phys. Rev. B46, 5933–5938.

    Google Scholar 

  32. [32] Tse, J.S., Klug, D.D., Ripmeester, J.A., Desgreniers, S., and K. Lagarec (1994) The role of non-deformable units in pressure-induced reversible amorphization of clathrasils, Nature 369, 724–727.

    Article  CAS  Google Scholar 

  33. [33] Tse, J.S. and Klug, D.D., (1992) Structural memory in pressure-amorphized AlPO4, Science 255, 1559–15

    Article  CAS  Google Scholar 

  34. [34] Mishima, O. Calvert, L.D., and Whalley, E. (1984) ‘Melting ice’ at 77 K and 10 kbar: A new method of making amorphous solids. Nature 310, 393–395.

    Article  CAS  Google Scholar 

  35. [35] Floriano, M.A., Whalley, E. Svensson, E.C., and Sears, V.F. (1986) Structure of high-density amorphous ice by neutron diffraction, Phys. Rev. Lett. 57, 3062–3064.

    Article  CAS  Google Scholar 

  36. [36] Wolf, D., Okamoto, S., Yip, S., Lutsko, J.F., and Kluge J. (1990) Thermodynamic parallels between solid-state amorphization and melting, J.Mater. Sci. 5, 286–301.

    CAS  Google Scholar 

  37. [37] Hemley, R.J., Jephcoat, A.P., Mao, H-K. Ming, L.C., Manghnani, M.H. (1988) Pressure induced amorphization of crystalline silica, Nature 334, 52–54.

    Article  CAS  Google Scholar 

  38. [38] Ewald, P. (1921) Die Berechnung optischer und elektrostatischer Gitterpotentiale Ann. Phys. 64, 253–287.

    Article  Google Scholar 

  39. [39] Binggeli, N. and Chelikowsky, J.R. (1992) Elastic instability in α-quartz under pressure, Phys. Rev. Lett. 69, 2220–2223.

    Article  CAS  Google Scholar 

  40. [40] Tse J.S. (1992) Mechanical Instability in ice Ih. A mechanism for pressure-induced amorphization J.Chem. Phys. 5482–5487

    Google Scholar 

  41. [41] Kingma, K.J., Hemley, R.J., Mao, H-K., Veblen, D.R. (1993) New high pressure transformation in α-quartz, Phys. Rev. Lett. 70, 3927–3930.

    Article  CAS  Google Scholar 

  42. [42] Somayazulu, M.S., Sharma, S.M., and Sikka, S.K. (1994) Structure of a new high pressure phase in α-quartz determined by molecular dynamics studies, Phys. Rev. Lett. 73, 98–101.

    Article  CAS  Google Scholar 

  43. [43] Wentzcovitch, R.M., da Silva, C., Chelikowsky, J.R. (1998) A new phase and pressure induced amorphization in silica, Phys. Rev. Lett. 80, 2149–2152.

    Article  CAS  Google Scholar 

  44. [44] Tse, J.S., Klug, D.D., and LePage, Y. (1997) High pressure four-coordinated structure of SiO2, Phys.Rev. B56, 10878–10881.

    Google Scholar 

  45. [45] Teter, D.M. and Hemley, R.J. (1998) High-pressure polymorphism in silica, Phys. Rev. Lett. 80, 2145–2148.

    Article  CAS  Google Scholar 

  46. [46] Le Page, Klug, D.D., and Tse, J.S. (1996) Derivation of conventional crystallographic descriptions of new phases from results of ab initio inorganic structure modelling, J. Appl. Cryst. 29, 503–508.

    Article  Google Scholar 

  47. [47] McNeil, L.E., and Grimsditch, M. (1992) Pressure amorphized SiO2 α-quartz: An anisotropic amorphous solid, Phys. Rev. Lett. 68, 83–85.

    Article  CAS  Google Scholar 

  48. [48] Tse, J.S. and Klug, D.D. (1993) Anisotropy in the structure of pressure-induced disordered solids, Phys. Rev. Lett. 70, 174–177.

    Article  CAS  Google Scholar 

  49. [49] Meade, C. Hemley, R.J., and Mao, H-K. (1992) High pressure x-ray diffraction of SiO2 glass, Phys. Rev. Lett. 69, 1387–1390.

    Article  CAS  Google Scholar 

  50. [50] Park, K.T., Terakura, K., and Matsui, Y. (1988) Theoretical evidence for a new ultar-high-pressure phase of SiO2, Nature 336, 670–672.

    Article  CAS  Google Scholar 

  51. [51] J.S. Tse, Klug, D.D., and Allan, D.C. (1995) The structure and stability of several high pressure phases of silica, Phys. Rev. B51, 16392–16395.

    Google Scholar 

  52. [52] Kruger, M.B. and Jeanloz, R. (1990) Memory glass: An amorphous material formed from AlPO4, Science 249, 647–649.

    Article  CAS  Google Scholar 

  53. [53] Handa, Y.P., Tse, J.S., Klug, D.D., and Whalley, E. (1991) Pressure-induced phase transitions in clathrate hydrates, J. Chem. Phys. 94, 623–627.

    Article  CAS  Google Scholar 

  54. [54] Gillet, P., Badro, J., Varrel, B., and McMillan, P.F. (1995) High-pressure behavior in AlPO4: Amorphization and the memory-glass effect, Phys. Rev. B51, 11262–11268.

    Google Scholar 

  55. [55] Wigner, E. and Huntington, H.B. (1935) On the possibility of a metallic modification of hydrogen, J. Chem. Phys. 3, 764–770.

    Article  CAS  Google Scholar 

  56. [56] Narayana, C., Luo, H., Orloff, J., and Ruoff, A.L. (1998) Solid hydrogen at 342 Gpa: no evidence for an alkali metal, Nature 393, 46–48.

    Article  CAS  Google Scholar 

  57. [57] Mao, H-K., and Hemley, R.J. (1994) Ultrahigh-pressure transitions in solid hydrogen, Rev. Mod. Phys. 66, 671–691.

    Article  CAS  Google Scholar 

  58. [58] R.J. Hemley, Z.G. Soos, M. Hanfland, and H-K. Mao (1994) Charge-transfer states in dense hydrogen, Nature 369, 384–387.

    Article  CAS  Google Scholar 

  59. [59] Hemley, R.J. and Mao, H-K. (1988) Phase transition in solid hydrogen at ultrahigh pressure, Phys. Rev. Lett. 61, 857–860.

    Article  CAS  Google Scholar 

  60. [60] Tse, J.S. and Klug, D.D. (1995) Evidence from molecular dynamics simulations for non-metallic behavior of solid hydrogen above 160 GPa, Nature 378, 595–597.

    Article  CAS  Google Scholar 

  61. [61] Edwards, B. and Ashcroft, N.W. (1998) Spontaneous polarization in dense hydrogen, Nature 388, 652–655.

    Google Scholar 

  62. [62] Tse, J.S. and Klug, D.D. (1998) Anomalous Isostructural Transformation in ice VIII, Phys. Rev. Lett. 81, 2466–2469.

    Article  CAS  Google Scholar 

  63. [63] Kuhs W.F. Finney J.L. Vettier C. and Bliss D.V. (1984) Structure and hydrogen ordering in ices VI VII and VIII by neutron powder diffraction J. Chem. Phys. 81 3612–3623)

    Google Scholar 

  64. [64] Besson, J.M., Klotz, S., Hamel, G., Marshall, W.G., Nelmes, R.J., and Loveday, J.S. (1997) Structural instability in ice VIII under pressure, Phys. Rev. Lett., 78, 3141–314

    Article  CAS  Google Scholar 

  65. [65] Hirsch, K.R. and Holzapfel, W.B. (1986) Effect of high pressure on the Raman spectra of ice VIII and evidence for ice X, J. Chem. Phys. 84, 2771–2775.

    Article  CAS  Google Scholar 

  66. [66] Wong, P.T.T. and Whalley, E. (1976) Raman spectrum of ice VIII, J. Chem. Phys. 64, 2359 (1976).

    Google Scholar 

  67. [67] Perdew, J.P. and Wang, Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B45, 13244–13249.

    Google Scholar 

  68. [68] Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B41, 7892–7895 (1990).

    Google Scholar 

  69. [69] M onkhorst, H.J. and Pack, J.D. (1976) Special points for Brillouin-zone integrations Phys. Rev. B50, 5188–5899.

    Google Scholar 

  70. [70] M.Y. Yin and M.L. Cohen, Phys. Rev. B26, 3259 (1980).

    Google Scholar 

  71. [71] Bruce, A.D., and Cowley, R.A. (1981) Structural phase transitions, Taylor and Frances Ltd. London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tse, J.S., Klug, D.D. (1999). Molecular Dynamics Studies of High Pressure Transformations and Structures. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics