Skip to main content

Hydrostatic Pressure as a Tool to Study Virus Assembly: Pressure-Inactivation of Viruses by Formation of Fusion Intermediate States

  • Chapter
High Pressure Molecular Science

Part of the book series: NATO Science Series ((NSSE,volume 358))

Abstract

The contribution of protein folding and protein-nucleic acid interactions to virus assembly has been measured in several bacterial, plant and animal viruses, using hydrostatic pressure as thermodynamic variable. By comparing the pressure stability among native wild-type viruses, single-amino acid mutants or empty particles, we have gained new insights about virus assembly and disassembly. We find that the isolated capsid proteins and the assembly intermediates are not fully folded, and that association of 60 or more subunits into an icosahedral particle is coupled to progressive folding of the coat protein and also to changes in interactions with the nucleic acid. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. Pressure studies on viruses have direct biotechnological applications. The ability of pressure to inactivate viruses has been evaluated with a view toward the applications of vaccine development and virus sterilization. We demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There are substantial evidence that a high pressure cycle traps a virus in the “fusion intermediate state”, not infectious but highly immunogenic. Pressure inactivation has been successful with viruses that cause disease in animals, especially foot-and-mouth disease virus (FMDV) and bovine rotavirus and humans, such as rhinoviruses, adenoviruses, alphaviruses, influenza and retroviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] Harrison, S., Wiley, D.C., and Skehel, J.J. (1996) Virus Structure. In “Fields Virology” 3rd Edition (B. N. Fields, D. M. Knipe, P. M. Howley, et al., Eds.), Chapter 3, pp. 59–100, Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  2. [2] Johnson, J. E (1996) Functional implications of protein-protein interactions in icosahedral viruses, Proc. Natl. Acad. Sci. USA 93, 27–33.

    Article  CAS  Google Scholar 

  3. [3] Weber, G. (1993) Pressure dissociation of the smaller oligomers: dimers and tetramers. In “High Pressure Chemistry, Biochemistry and Material Sciences”, NATO ASI series C (R. Winter and J. Jonas, Eds), Kluwer Academic Publishers, Dordrecht, 401: 471–487.

    Google Scholar 

  4. [4] Silva, J.L. and Weber, G. (1993) Pressure stability of proteins, Annu. Rev. Phys. Chem. 44, 89–113.

    Article  CAS  Google Scholar 

  5. [5] Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., and Balny, C. (1994). Exploiting the effects of hydrostatic pressure in biotechnological applications. Trends Biotechnol. 12, 493–501.

    Article  CAS  Google Scholar 

  6. [6] Silva, J. L., Foguel, D, Da Poian, A.T.and Prevelige, P.E. (1996) The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages, Curr. Opin. Struct. Biol. 6:166–175.

    Article  CAS  Google Scholar 

  7. [7] Da Poian, A. T., Johnson, J. E. and Silva, J. L. (1994) Differences in pressure stability of the three components of cowpea mosaic virus: Implications for virus assembly and disassembly, Biochemistry 33, 8339–8346.

    Article  Google Scholar 

  8. [8] Prevelige, P.E., King, J. and Silva, J.L. (1994) Pressure denaturation of bacteriophage P22 coat protein and its entropic stabilization in the icosahedral shells, Biophys. J. 66, 1631–1641.

    Article  CAS  Google Scholar 

  9. [9] Da Poian, A.T., Oliveira, A.C. and Silva, J.L. (1995) Cold denaturation of an icosahedral virus. The role of entropy in virus assembly, Biochemistry 34, 2672–2677.

    Article  Google Scholar 

  10. [10] Gaspar, L. P., Johnson, J.E., Silva, J.L. and Da Poian, A.T. (1997) Different Partially Folded States of the Capsid Protein of Cowpea Severe Mosaic Virus in the Disassembly Pathway, J. Mol. Biol. 273, 456–466.

    Article  CAS  Google Scholar 

  11. [11] Silva, J. L., Luan, P., Glaser, M., Voss, E.W. and Weber, G. (1992b) Effects of hydrostatic pressure on a membrane-enveloped virus: High immunogenicity of the pressure-inactivated virus, J. Virol. 66, 2111–2117.

    CAS  Google Scholar 

  12. [12] Silva, J. L. (1993) Effects of pressure on multimeric proteins and viruses. In “High Pressure Chemistry, Biochemistry and Material Sciences”, NATO ASI series C (R. Winter and J. Jonas, Eds), Kluwer Academic Publishers, Dordrecht, 401: 561–578.

    Google Scholar 

  13. [13] Pontes, L., Fornells, L.A., Giongo, V., Araujo, J.R.V., Sepulveda, A., Villas-Boas, M., Bonafe, C.F.S. and Silva, J.L. (1997). Pressure Inactivation of Animal Viruses: Potential Biotechnological Applications. High Pressure Research in the Bioscience and Biotechnology (Heremans, K., Ed.), Leuven University Press, Leuven, pp. 91–94.

    Google Scholar 

  14. [14]Oliveira, A. C., Ishimaru, D., Gonçalves, R. B., Mason, P., Carvalho, D., Smith, T. Silva, J. L. (1999). Low Temperature and Pressure Stability of Picornaviruses: Implication for Virus Uncoating, Biophys. J. 76, 1270–1279.

    Article  CAS  Google Scholar 

  15. [15] Lauffer M.A. and Dow, R.B. (1941) Denaturation of TMV at high pressure, J. Biol.Chem. 140, 509–518.

    CAS  Google Scholar 

  16. [16] Bonafe, C.F., Vital, C.M., Telles, R.C., Goncalves, M.C., Matsuura, M.S., Pessine, F.B., Freitas, D.R., and Veja, J. (1998) Tobacco mosaic virus disassembly by high hydrostatic pressure in combination with urea and low temperature, Biochemistry 37, 11097–11105.

    Article  CAS  Google Scholar 

  17. [17] Silva, J. L., and G. Weber. (1988) Pressure-induced dissociation of brome mosaic virus, J. Mol. Biol. 199, 149–161.

    Article  CAS  Google Scholar 

  18. [18] Foguel, D., Teschke, C.M., Prevelige, P.E. and Silva, J.L. (1995) The role of entropic interactions in viral capsids: single-amino-acid substitutions in P22 bacteriophage coat protein resulting in loss of capsid stability, Biochemistry 34, 1120–1126.

    Article  CAS  Google Scholar 

  19. [19] Souza-Jr., P. C., Tuma, R., Prevelige, P. E., Silva, J. L., Foguel, D. (1999) Cavity defects in the procapsid of bacteriophage P22 and the mechanism of capsid maturation, J. Mol. Biol., in press.

    Google Scholar 

  20. [20] Foguel, D. and Weber, G. (1995) Pressure-induced dissociation and denaturation of allophycocyanin at sub-zero temperatures, J. Biol. Chem. 270, 28759–28766.

    Article  CAS  Google Scholar 

  21. [21] Nash, D and Jonas, J. (1997) Structure of pressure-assisted cold denatured lysozyme and comparison with lysozyme intermediates, Biochemistry 36, 14375–14383.

    Article  CAS  Google Scholar 

  22. [22] Da Poian, A.T., Oliveira, A.C., Gaspar, L.P., Silva, J.L. and Weber, G. (1993) Reversible pressure dissociation of R17 bacteriophage: The physical individuality of virus particles, J. Mol. Biol. 231, 999–1008.

    Article  Google Scholar 

  23. [23] Valegard, K., Liljas, L., Fridborg, K. and Unge, T. (1990) The three-dimensional structure of the icosahedral bacterial virus MS2, Nature (London) 345, 36–41.

    Article  CAS  Google Scholar 

  24. [24] Rueckert, R. R. (1996) Picornaviridae: The Viruses and Their Replication. In “Fields Virology” 3rd Edition (B. N. Fields, D. M. Knipe, P. M. Howley, et al., Eds.), Chapter 21, pp. 609–645, Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  25. [25] Rossmann, M. G., Arnold, E., Erickson, J.W., Frankenberger, E.A., Griffith, J.P., Hecht, H.J., Johnson, J.E., Kamer, G., Luo, M., Mosser, A.G., Rueckert, R.R., Sherry, B. and Vriend, G. (1985) Structure of a human common cold virus and functional relationship to other picornaviruses, Nature 317, 145–153.

    Article  CAS  Google Scholar 

  26. [26] Hogle, J. M., Chow, M. and Filman, D.J. (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution, Science 229, 1358–1365.

    Article  CAS  Google Scholar 

  27. [27] Acharya, R., Fry, E., Stuart, D.I., Fox, G., Rowlands, D. and Brow, F. (1989). The three-dimensional structure of foot and mouth disease virus at 2.9 Å, Nature 337, 709–716.

    Article  CAS  Google Scholar 

  28. [28] Giranda, V. L., Heinz, B.A., Oliveira, M.A., Minor, I., Kim, K.H., Kolatkar, P.R., Rossmann, M.G., Rueckert, R.R. (1992) Acid-induced structural changes in human rhinovirus 14: Possible role in uncoating, Proc. Natl. Acad. Sci. USA 89, 10213–10217.

    Article  CAS  Google Scholar 

  29. [29] Rossmann, M. G. (1994) Viral cell recognition and entry, Protein Science 3, 1712–1725.

    Article  CAS  Google Scholar 

  30. [30] Jurkiewicz E., Villas-Boas, M., Silva, J.L., Weber, G., Hunsmann, G. and Clegg, R.M. (1995) Inactivation of Simian Immunodeficiency Viruses by Hydrostatic Pressure, Proc. Natl. Acad Sci. USA 92, 6935–6937.

    Article  CAS  Google Scholar 

  31. [31] Foguel, D., Dantas, V.S., Silva, A.C.B., Ano-Bom, A.P.D., Schwarcz, W.D., Silva, J.L. (1999) Mimicry of the fusion-active conformation of influenza virus by high pressure. Submitted

    Google Scholar 

  32. [32] Carr, C.M. and Kim, P.S. (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin, Cell 73, 823–832.

    Article  CAS  Google Scholar 

  33. [33] Bullough, P.A., Hughson, F.M., Skehel, J.J., Wiley, D.C. (1994) Structure of influenza haemaglutinin at the pH of membrane fusion, Nature 371, 37–43.

    Article  CAS  Google Scholar 

  34. [34] Chan, D.C. and Kim, P.S. (1998) HIV Entry and Its Inhibition, Cell 93, 681–684.

    Article  CAS  Google Scholar 

  35. [35] Budowsky, E. I. (1991) Problems and prospects for preparation of killed antiviral vaccines, Advances in Virus Research 39, 255–290.

    Article  CAS  Google Scholar 

  36. [36] Bloom, B. R. (1996) A perspective on AIDS vaccines, Science 272, 1888–1890.

    Article  CAS  Google Scholar 

  37. [37] Nakagami, T., Shigehisa, T., Ohmori, T., Taji, S., Hase, A., Kimura, T. and Yamanishi, K. (1992) Inactivation of herpes viruses by hydrostatic pressure, J. Virol. Methods 38, 255–261.

    Article  CAS  Google Scholar 

  38. [38] Da Poian, A. T., Gomes, A.M.O., Oliveira, R.J.N. and Silva, J.L. (1996) Migration of Vesicular Stomatitis Virus Glycoprotein to the Nucleus of Infected Cells, Proc. Natl. Acad. Sci. USA 93, 8268–8273.

    Article  Google Scholar 

  39. [39] LaCasse, R.A., Follis, K.E., Trahey, M., Scarborough, J.D., Littman DR., Nunberg, J.H. (1999) Fusion-competent vaccines: broad neutralization of primary isolates of HIV, Science 283, 357–362

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Oliveira, A.C. et al. (1999). Hydrostatic Pressure as a Tool to Study Virus Assembly: Pressure-Inactivation of Viruses by Formation of Fusion Intermediate States. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics