Skip to main content

The Phase Diagram and the Pressure-Temperature Behavior of Proteins

  • Chapter

Part of the book series: NATO Science Series ((NSSE,volume 358))

Abstract

The pressure and temperature behavior of proteins is discussed in the framework of the phase diagram. This gives unique information on the changes in heat capacity, thermal expansion and compressibility of protein unfolding. It also relates the cold, heat and pressure denaturation. The difference in pressure- and temperature-induced aggregation of unfolded proteins shows the unique features of pressure effects. A molecular interpretation of the thermodynamic quantities is not possible on the basis of model systems unless the packing defects are taken into account. High pressure molecular dynamic calculations contribute in a unique way to our understanding of pressure effects.

A fresh instrument serves the same purpose as foreign travel; it shows things in unusual combinations. A. N. Whitehead in: Science and modern world.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. Hemley, R.J. and Ashcroft, N.W. (1998) The revealing role of pressure in the condensed matter sciences, Physics Today August, 26–32.

    Google Scholar 

  2. 2. Kooi, M.E. and Schouten, J.A. (1998) Raman spectra and phase behavior of the mixed solid N2-Ar at high pressure, Phys. Rev. 57B, 10407–10413.

    Google Scholar 

  3. 3. Fusi, P., Goossens, K., Consonni, R., Grisa, M., Puricelli, P., Vecchio, G., Vanoni, M., Zetta, L., Heremans, K., Tortora, P. (1997) Extreme heat-and pressure-resistant 7-KDa protein P2 from the Archeon Sulfolobus solfataricus is dramatically destabilized by a single-point amino acid substitution, Proteins: Structure, Function and Genetics 29, 381–390.

    Article  CAS  Google Scholar 

  4. 4. Engelborghs, Y. (1998) General features of the recognition by tubulin of colchicine and related compounds, Eur. J. Biophys. 27, 437–445.

    Article  CAS  Google Scholar 

  5. 5. Hauben, K., Bartlett, D., Soontjens, C., Cornelis, K., Wuytack, E., and Michiels, C. (1997) Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Appl. and Environm. Microbiol. 63, 945–950.

    CAS  Google Scholar 

  6. 6. Horikoshi, K. and Grant, W.D. (1998) Extremophiles, Wiley-Liss, New York.

    Google Scholar 

  7. 7. Gross, M. (1998) Life on the Edge, Plenum Trade, New York.

    Google Scholar 

  8. 8. Seki, K. and Toyoshima, M. (1998) Preserving tardigrades under pressure, Nature 395, 853–854.

    Article  CAS  Google Scholar 

  9. 9. Sojka, B. and Ludwig, H. (1997) Effects of rapid pressure changes on the inactivation of Bacillus subtilis spores, Pharm. Ind. 59, 436–438.

    Google Scholar 

  10. 10. Goossens, K., Smeller, L., Frank, J. and Heremans, K. (1996) Conformation of bovine pancreatic trypsin inhibitor studied by Fourier transform infrared spectroscopy, Eur. J. Biochem. 236, 254–262

    Article  CAS  Google Scholar 

  11. 11. Yayanos, A. (1998) Empirical and theoretical aspects of life at high pressure in the deep sea, in Horikoshi, K. and Grant, W.D. (1998) Extremophiles, Wiley-Liss, New York.

    Google Scholar 

  12. 12. Zhang, J., Peng, X., Jonas, A. and Jonas, J. (1995) NMR study of the cold, heat, and pressure unfolding of ribonuclease A, Biochemistry 34, 8361–8641.

    Google Scholar 

  13. 13. Mombelli, E., Afshar, M., Fusi, P., Mariani, M., Tortora, P., Connelly, J.P. and Lange, R. (1997) The role of phenylalanine 31 in maintaining the conformational stability of ribonuclease P2 from Sulfolobus solfataricus under extreme conditions of temperature and pressure, Biochemistry 36, 8733–8742.

    Article  CAS  Google Scholar 

  14. 14. Mozhaev, V., Heremans, K., Frank, J., Masson, P. and Balny, C. (1996) High pressure effects on protein structure and function, Proteins: Structure, Function and Genetics 24, 81–91.

    Article  CAS  Google Scholar 

  15. 15. Hendrickx, M., Ludikhuyze, L., Van den Broeck, I. and Weemaes, C. (1998) Effects of high pressure on enzymes related to food quality, Trends Food Sci. Technol., 8, 197–203.

    Article  Google Scholar 

  16. 16. Klug, D.D. & Whalley, E. (1979) Elliptic phase boundaries between smectic and nematic phases. J. Chem. Phys. 71, 1874–1877.

    Article  CAS  Google Scholar 

  17. 17. Mishima, O. and Stanley, H.E. (1998) The relationship between liquid, supercooled and glassy water, Nature 396, 329–335.

    Article  CAS  Google Scholar 

  18. 18. Atake, T. and Angell, C.A. (1979) Pressure dependence of the glass transition in molecular liquids and plastic crystals, J. Phys. Chem., 83, 3218–3223.

    Article  Google Scholar 

  19. 19. Bridgman, P.W. (1914) The coagulation of albumen by pressure, J. Biol. Chem. 19, 511–512.

    CAS  Google Scholar 

  20. 20. Suzuki, K. (1960) Studies on the kinetics of protein denaturation under high pressure. Rev. Phys. Chem. Japan. 29, 91–97.

    CAS  Google Scholar 

  21. 21. Simpson, R.B. and Kauzmann, W. (1953) The kinetics of protein denaturation. I. The behavior of the optical rotation of ovalbumin in urea solutions. J. Am. Chem. Soc. 75, 5139–5152.

    Article  CAS  Google Scholar 

  22. 22. Brandts, J.F., Olivera, R.J. and Westort, C. (1970) Thermodynamics of protein denaturation. Effect of pressure on the denaturation of ribonuclease A. Biochemistry 9, 1038–1047.

    Article  CAS  Google Scholar 

  23. 23. Hawley, S.A. (1971) Reversible pressure-temperature denaturation of chymotrypsinogen. Biochemistry 10, 2436–2442.

    Article  CAS  Google Scholar 

  24. 24. Zipp, A. and Kauzmann, W. (1973) Pressure Denaturation of Metmyoglobin. Biochemistry 12, 4217–4228.

    Article  CAS  Google Scholar 

  25. 25. Kanaya, H., Hara, K., Nakamura, A. and Hiramatsu, N. (1996) Time-resolved turbidimetric measurements during gelation process of egg white under high pressure, in High Pressure Bioscience and Biotechnology, Hayashi, R. and Balny, C. (Eds.) Elsevier, Amsterdam, pp. 343–346.

    Chapter  Google Scholar 

  26. 26. Taniguchi, Y. and Suzuki, K. (1983) Pressure inactivation of α-chymotrypsin, J. Phys. Chem. 87, 5185–5193.

    Article  CAS  Google Scholar 

  27. 27. Heinisch, O., Kowalski, E, Goossens, K., Frank, J., Heremans, K., Ludwig, H. and Tauscher, B. (1995) Pressure effects on the stability of lipoxygenase: Fourier transform infrared spectroscopy and enzyme activity studies, Z. Lebensm. Unters. Forsch. 201, 562–565.

    Article  CAS  Google Scholar 

  28. 28. Weingand-Ziadé, A., Renault, F. and Masson, P. (1997) Combined pressure/heat-induced inactivation of butyrylcholinesterase, Biochim. Biophys. Acta 1340, 245–252.

    Article  Google Scholar 

  29. 29. Ludikhuyze, L., Indrawati, Van den Broeck, I., Weemaes, C. and Hendrickx, M. (1998) Effect of combined pressure and temperature on soybean lipoxygenase. 1. Influence of extrinsic and intrinsic factors on isobaric-isothermal inactivation kinetics, J. Agr. Food Chem. 46, 4074–4080.

    Article  CAS  Google Scholar 

  30. 30. Weemaes PPO Weemaes, C.A., Ludikhuyze, L.R., Van den Broeck, I. and Hendrickx, M.E. (1998) Kinetics of combined pressure-temperature inactivation of avocado polyphenoloxidase, Biotechnol. Bioeng. 60, 292–300.

    Article  CAS  Google Scholar 

  31. 31. Ludikhuyze, L.R., Van den Broeck, I., Weemaes, C.A., Herremans, C.H., Van Impe, J.F., Hendrickx, M.E. and Tobback, P.P. (1997) Kinetics for isobaric-isothermal inactivation of Bacillus subtilis α-amylase, Biotechnol Prog. 13, 532–538.

    Article  CAS  Google Scholar 

  32. 32. Rubens, P., Smeller, L. and Heremans, K. (1998) Pressure-temperature stability diagrams of proteins: α-amylases from Bacillus species, in High Pressure food science, bioscience and chemistry, Isaacs, N.S. (Ed), Royal Soc. Chem., Cambridge, pp. 411–416.

    Chapter  Google Scholar 

  33. 33. Rubens, P., Frank, J. and Heremans, K. (1999) Stability diagram of lipoxygenase as determined from H/D exchange kinetics and from conformational changes. This volume.

    Google Scholar 

  34. 34. Ludwig, H., Scigalla, W. and Sojka, B. (1996) Pressure-and temperature-induced inactivation of microorganisms, in J. L. Markley, C. Royer & D. Northrup (Eds.) High Pressure Effects in Molecular Biophysics and Enzymology, Oxford University Press, pp. 346–363.

    Google Scholar 

  35. 35. Hashizume, C., Kimura, K. and Hayashi, R. (1995) Kinetic analysis of yeast inactivation by high pressure treatment at low temperatures, Biosci. Biotech. Comm. 59, 1455–1458.

    Article  CAS  Google Scholar 

  36. 36. Sonoike, K., Setoyama, T., Kuma, Y. and Kobayashi, S. (1992) Effect of pressure and temperature on the death rates of L. casei and E. coli, in C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High Pressure and Biotechnology, John Libbey Eurotext Ltd, Montrouge, pp. 297–300

    Google Scholar 

  37. 37. Hellemons, J.C. and Smelt, J.P.P.M. (1999) Building fail-safe models describing the effect of temperature and pressure on the kinetics of inactivation of infectious pathogens in foods, in High pressure bioscience & biotechnology, Ludwig, H. (Ed), Springer Verlag, Heidelberg, in press.

    Google Scholar 

  38. 38. Gross, P. and Ludwig, H. (1992) Pressure-temperature-phase diagram for the stability of bacteriophage T4, in: C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High Pressure and Biotechnology, John Libbey Eurotext Ltd, Montrouge, pp 57–59.

    Google Scholar 

  39. 39. Butz, P. and Tauscher, B. (1995) Inactivation of fruit fly eggs by high pressure treatment, J. Food Proc. Preserv. 19, 147–150.

    Article  Google Scholar 

  40. 40. Saldana, J.L. and Balny, C. (1992) Device for optical studies of fast reactions in solution as a fonction of pressure and temperature, in: C. Balny, R. Hayashi, K. Heremans, & P. Masson (Eds.), High Pressure and Biotechnology, John Libbey Eurotext Ltd, Montrouge, pp 529–531.

    Google Scholar 

  41. 41. Kunugi, S., Takano, K., Tanaka, N., Suwa, K. and Akashi, M. (1997) Effects of pressure on the behavior of the thermoresponsive polymer poly(N-vinylisobutyramide) (PNVIBA), Macromolecules 30, 4499–4501.

    Article  CAS  Google Scholar 

  42. 42. Sun, T. and King, H.E.Jr. (1996) Pressure-induced reentrant behavior in the poly(N-vinyl-2-pyrrolidone)-water system, Phys. Rev. 54 E, 2696–2703.

    Google Scholar 

  43. 43. Thevelein, J., Van Assche, J.A., Heremans, K. and Gerlsma, S.Y. (1981) Gelatinisation temperature of starch as influenced by high pressure, Carbohydrate Res. 93, 304–307.

    Article  CAS  Google Scholar 

  44. 44. Douzals, J.P., Perrier Cornet; J.M., Gervais, P. and Coquille, J.C. (1999) Hydration and pressure — temperature phase diagram of wheat starch, in High pressure bioscience & biotechnology, Ludwig, H. (Ed), Springer Verlag, Heidelberg, in press.

    Google Scholar 

  45. 45. Rubens, P. and Heremans, K. (1999) Pressure and temperature phase diagram of starch gelation followed by FTIR, manuscript in preparation.

    Google Scholar 

  46. 46. Balny, C. and Lange, R. (1999) Optical spectroscopic techniques in high pressure bioscience, This volume.

    Google Scholar 

  47. 47. Winter, R., Landwehr, A., Brauns, T.H., Erbes, J., Czeslik, C. and Reis, O. (1996) High pressure effect on the structure and phase behavior of model membrane systems, in High Pressure Effects in Molecular Biophysics and Enzymology, J. L. Markley, C. Royer & D. Northrup (Eds.), Oxford University Press, p. 274–297.

    Google Scholar 

  48. 48. Smeller, L. and Heremans, K. (1997) Some thermodynamic and kinetic consequences of the phase diagram of protein denaturation, in: K. Heremans (Ed), High Pressure Research in Bioscience and Biotechnology, Leuven University Press, pp. 55–58.

    Google Scholar 

  49. 49. Haynes, J.M. (1968) Thermodynamics of freezing in porous solids, in Low temperature biology of foodstuffs, Hawthorn, J. (Ed), Pergamon Press, Oxford, pp 79–104.

    Google Scholar 

  50. 50. Huang, G.S. and Oas, T.G. (1996) Heat and cold denatured states of monomeric lambda repressor are thermodynamically and conformationally equivalent, Biochemistry 35, 6175–6180.

    Google Scholar 

  51. 51. Cooper, A. (1973) Thermodynamic fluctuations in protein molecules, Proc. Nat. Acad. Sci. USA 73, 2740–2741.

    Article  Google Scholar 

  52. 52. Landau, L. and Lifshitz, E. (1969) Statistical Physics, Theoretical Physics Vol. 5, Pergamon Press Oxford.

    Google Scholar 

  53. 53. Gomez, J., Hilser, V.J., Xie, D. and Freire, E. (1995) The heat capacity of proteins, Proteins: Structure, Function and Genetics 22, 404–412.

    Article  CAS  Google Scholar 

  54. 54. Frauenfelder, H., Alberding, N.A., Ansari, A., Braunstein, D., Cowen, B.R., Hong, M.K., Iben, I.E.T., Johnson, J.B., Luck, S., Marden, M.C., Mourant, J.R., Ormos, P., Reinisch, L., Scholl, R., Schulte, A., Shyamsunder, E., Sorensen, L.B., Steinbach, P.J., Xie, A., Young, R.D. and Yue, K.T. (1990) Proteins and pressure, J. Phys. Chem. 94, 1024–1037.

    Article  CAS  Google Scholar 

  55. 55. Kaminsky, S.M. and Richards, F.M. (1992) Reduction of thioredoxin significantly decreases its partial specific volume and adiabatic compressibility, Protein Science, 1, 22–3

    Article  CAS  Google Scholar 

  56. 56. Kharakoz, D.P. and Bychkova, V.E. (1997) Molten globule of human α-lactalbumin: hydration, density and compressibility of the interior, Biochemistry 36, 1882–1890.

    Article  CAS  Google Scholar 

  57. 57. Chalikian, T.V., Totrov, M., Abagyan, R. and Breslauer, K.J. (1996) The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data, J. Mol. Biol. 260, 588–603.

    Article  CAS  Google Scholar 

  58. 58. Hiebl, M. and Maksymiw, R. (1991) Anomalous temperature dependence of the thermal expansion of proteins, Biopolymers 31, 161–167.

    Article  CAS  Google Scholar 

  59. 59. Gekko, K. and Hasegawa, Y. (1989) Effect of temperature on the compressibility of native globular proteins, J. Phys. Chem. 93, 426–429.

    Article  CAS  Google Scholar 

  60. 60. Chalikian, T.V. and Breslauer, K.J. (1996) On volume changes accompanying conformational transition of biopolymers, Biopolymers 36, 619–626.

    Google Scholar 

  61. 61. Hedwig, G.R., Høiland, H. and Høgseth, E. (1996) Thermodynamic properties of peptide solutions. Part 15. Partial molar isentropic compressibilities of some glycyl dipeptides in aqueous solution at 15 and 35°C, J. Sol. Chem. 25, 1041–1053.

    Article  CAS  Google Scholar 

  62. 62. Frauenfelder, H., Hartmann, H., Karplus, M., Kuntz, Jr. I.D., Kuriyan, J., Parak, F., Petsko, G.A., Ringe, D., Tilton, Jr. R.F., Connelly, M.L. and Max, N. (1987) Thermal expansion of a protein, Biochemistry 26, 254–261.

    Article  CAS  Google Scholar 

  63. 63. Tilton Jr., R.F., Dewan, J.C. and Petsko, G.A. (1992) Effects of temperature in protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K, Biochemistry 31, 2469–2481.

    Article  CAS  Google Scholar 

  64. 64. Sarvazyan, A.P. (1991) Ultrasonic velocimetry of biological compounds, Annu. Rev. Biophys. Biophys. Chem. 20, 321–342.

    Article  CAS  Google Scholar 

  65. 65. Benolenko, V.N., Chaiikian, T., Funck, Th., Kankia, B. and Sarvazyan, A.P. (1997) High resolution ultrasonic measurements as a tool for studies on biochemical systems under variation of pressure, in: K. Heremans (Ed.), High Pressure Research in Bioscience and Biotechnology, Leuven University Press, pp. 147–150

    Google Scholar 

  66. 66. Froment, M.Th., Lockridge, O. and Masson, P. (1998) Resistance of butyrylcholinesterase to inactivation by ultrasound: effects of ultrasound on catalytic activity and subunit association, Biochim. Biophys. Acta, 1387, 53–64.

    Article  CAS  Google Scholar 

  67. 67. Kharakoz, D.P. (1997) Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure, Biochemistry 36, 10276–10285.

    Article  CAS  Google Scholar 

  68. 68. Chaiikian, T., Völker, J., Anafi, D. and Breslauer, K.J. (1997) The native and the heat-induced denatured states of α-Chymotrypsinogen A: Thermodynamic and Spectroscopic studies, J. Mol. Biol. 274, 237–252.

    Article  Google Scholar 

  69. 69. Doster, W., Simon, B., Schmidt, G. and Mayr, W. (1985) Compressibility of lysozyme in solution from time-resolved Brillouin difference spectroscopy, Biopolymers, 24, 1543–154

    Article  CAS  Google Scholar 

  70. 70. Heremans, K. and Smeller, L. (1998) Protein structure and dynamics at high pressure, Biochim. Biophys. Acta, 1386, 353–37

    Article  CAS  Google Scholar 

  71. 71. Zollfrank, J., Friedrich, J., Fidy, J. and Vanderkooi, J.M. (1991) Photochemical holes under pressure: Compressibility and volume fluctuations of a protein, J. Chem Phys. 94, 8600–8603.

    Article  CAS  Google Scholar 

  72. 72. Friedrich, J. (1995) Hole burning spectroscopy and the physics of proteins, Methods in Enzymology 246, 226–259.

    Article  CAS  Google Scholar 

  73. 73. Fidy, J., Vanderkooi, J.M., Zollfrank, J. and Friedrich, J. (1992) Softening of the packing density of horseradish peroxidase by a H-donor bound near the heme pocket, Biophys. J. 63, 1605–1612.

    Article  CAS  Google Scholar 

  74. 74. Köhler, M., Friedrich, J. and Fidy, J. (1998) Proteins in electric fields and pressure fields: basic aspects, Biochim. Biophys. Acta 1386, 255–288.

    Article  Google Scholar 

  75. 75. Sandroff, C.J., King, Jr. H.E., and Herschbach, D.R. (1984) High pressure study of the liquid/solid interface: Surface enhanced Raman scattering from adsorbed molecules, J. Phys. Chem. 88, 5647–5653.

    Article  CAS  Google Scholar 

  76. 76. Gardner, D.J., Walker, N.A. and Dare-Edwards, M.P. (1987) Density and temperature effects on relative Raman intensities in liquid toluene, Spectrochimica Acta 43A, 1241–1247.

    Google Scholar 

  77. 77. Heremans, K., Goossens, K. and Smeller, L. (1996) Pressure-tuning spectroscopy of proteins: Fourier transform infrared studies in the diamond anvil cell, in: J. L. Markley, D.B. Northrop, C. A. Royer (Eds), High pressure effects in molecular biophysics and enzymology, Oxford University Press, N.Y., pp. 44–61.

    Google Scholar 

  78. 78. Akasaka, K. Tezuka, T. and Yamada, H. (1997) Pressure-induced changes in the folded structure of lysozyme, J. Mol. Biol. 271, 671–678.

    Article  CAS  Google Scholar 

  79. 79. Li, H., Yamada, H. and Akasaka, K. (1998) Effect of pressure on individual hydrogen bonds in proteins. Basic Pancreatic Trypsin Inhibitor, Biochemistry 37, 1167–1172.

    Article  CAS  Google Scholar 

  80. 80. Kundrot, C.E. and Richards, F.M. (1987) Crystal structure of hen egg-white lysozyme at a hydrostatic pressure of 1000 atmospheres, J. Mol. Biol. 193, 157–170.

    Article  CAS  Google Scholar 

  81. 81. Katrusiak, A. and Dauter, Z. (1996) Compressibility of lysozyme protein crystals by X-ray diffraction, Acta Cryst. D52, 607–608.

    CAS  Google Scholar 

  82. 82. Heremans, K. and Wong, P.T.T. (1985) Pressure effect on the Raman spectrum of proteins: Pressure induced changes in the conformation of lysozyme in aqueous solutions, Chem Phys. Letters 118, 101–104.

    Article  CAS  Google Scholar 

  83. 83. Yamato, T., Higo, J., Seno, Y. and Go, N. (1993) Conformational deformation in deoxymyoglobin by hydrostatic pressure, Proteins: Structure, Function and Genetics 16, 327–340.

    Article  CAS  Google Scholar 

  84. 84. Morishima, I. and Hara, M. (1983) High-pressure nuclear magnetic resonance studies of hemoproteins. Pressure-induced structural changes in the heme environments of ferric low-spin metmyoglobin complexes, Biochemistry 22, 4102–4107.

    Article  CAS  Google Scholar 

  85. 85. Tabor, D. (1991) Gases, liquids and solids and other states of matter, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  86. 86. Flores, J.J. and Chronister, E.L. (1996) Pressure-dependent Raman shifts of molecular vibrations in poly-(methyl methacrylate) and polycarbonate polymers, J. Raman Spectrosc. 27, 149–153.

    Article  CAS  Google Scholar 

  87. 87. Wada, Y., Itani, A., Nishi, T. and Nagai, S. (1969) Grüneisen constant and thermal properties of crystalline and glassy polymers, J. Polym. Sc. A2 7, 201–208.

    Article  CAS  Google Scholar 

  88. 88. Goossens, K., Smeller, L. and Heremans, K. (1993) Pressure tuning spectroscopy of the low-frequency Raman spectrum of liquid amides, J. Chem. Phys. 99, 5736–5741.

    Article  Google Scholar 

  89. 89. Kauzmann, W. (1959) Some factors in the interpretation of protein denaturation, Adv. Prot. Chem. 14, 1–63.

    Article  CAS  Google Scholar 

  90. 90. Harpaz, Y., Gerstein, M. and Chothia, C. (1994) Volume changes on protein folding, Structure 4, 641–649.

    Article  Google Scholar 

  91. 91. Murphy, L.R., Matubayasi, N., Payne, V.A. and Levy, R.M. (1998) Protein hydration and unfolding — insights from experimental partial specific volumes and unfolded protein models, Folding and Design 3, 105–118.

    Article  CAS  Google Scholar 

  92. 92. Weber, G. and Drickamer, H.G. (1983) The effect of high pressure upon proteins and other biomolecules, Q. Rev. Biophys. 16, 89–112.

    Article  CAS  Google Scholar 

  93. 93. Silva, J.L. and Weber, G. (1993) Pressure stability of proteins, Ann. Rev. Phys. Chem. 44, 89–113.

    Article  CAS  Google Scholar 

  94. 94. Vidugiris, G.J.A. and Royer, C.A. (1998) Determination of the volume changes for pressure-induced transitions of apomyoglobin between the native, molten globule, and unfolded states, Biophys. J. 75, 463–470.

    Article  CAS  Google Scholar 

  95. 95. Deng, Q. and Jean, Y.C. (1993) Free volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence, Macromolecules 26, 30–34.

    Article  CAS  Google Scholar 

  96. 96. Deng, Q., Sundar, C.S. and Jean, Y.C. (1992) Pressure dependence of free-volume hole properties in an epoxy polymer, J. Phys. Chem. 96, 492–495.

    Article  CAS  Google Scholar 

  97. 97. Chalikian, T. and Breslauer, K.J. (1998) Thermodynamic analysis of biomolecules: a volumetric approach, Curr. Opin. Struct. Biol. 8, 657–664.

    Article  CAS  Google Scholar 

  98. 98. Snauwaert, J., Rubens, P., Vermeulen, G, Hennau, F. and Heremans, K. (1998) In situ microscopic observations of pressure-induced gelatinization of starch in the diamond anvil cell, in High Pressure food science, bioscience and chemistry, Isaacs, N.S. (Ed), Royal Soc. Chem., Cambridge, pp. 457–464.

    Chapter  Google Scholar 

  99. 99. Wroblowski, B., Diaz, J.F., Heremans, K. and Engelborghs, Y. (1996) Molecular mechanisms of pressure induced conformational changes in BPTI, Proteins: Structure, Function and Genetics 25, 446–455.

    CAS  Google Scholar 

  100. 100. Timasheff, S.N. (1998) Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated, Adv. Prot. Chem. 51, 355–432.

    Article  CAS  Google Scholar 

  101. 101. Fontes, N., Nogueiro, E., Margarida Elvas, A., Correa de Sampio, T. and Barreiros, S. (1998) Effects of pressure on the catalytic activity of subtilisin Carlsberg suspended in compressed gases, Biochem. Biophys. Acta 1383, 165–174.

    Article  CAS  Google Scholar 

  102. 102. Reid, C. and Rand, R.P. (1997) Probing protein hydration and conformational states in solution, Biophys. J. 72, 1022–1030.

    Article  CAS  Google Scholar 

  103. 103. Robinson, C.R. and Sligar, S.G. (1995) Heterogeneity in molecular recognition by restriction endonucleases: Osmotic and hydrostatic pressure effects on BamHI, Pvu II and Eco RV specificity, Proc. Nat. Acad Sci. USA 92, 3444–3448.

    Article  CAS  Google Scholar 

  104. 104. Di Primo, C., Deprez, E. Hui Bon Hoa, G. and Douzou, P. (1995) Antagonistic effects of hydrostatic pressure and osmotic pressure on Cytochrome P-450cam spin transition, Biophys. J. 68, 2056–2061.

    Article  Google Scholar 

  105. 105. Callen, H.B. (1985) Thermodynamics and an introduction to thermostatistics, John Wiley, New York.

    Google Scholar 

  106. 106. Parsegian, VA., Rand, R.P., Fuller, N.L. and Rau, D.C. (1986) Osmotic stress for the direct measurement of intermolecular forces, Methods in Enzymology 127, 400–416.

    Article  CAS  Google Scholar 

  107. 107. Timasheff, S.N. (1998) In disperse solution, “osmotic stress” is a restricted case of preferential interactions, Proc. Nat. Acad. Sci. USA 95, 7363–7367.

    Article  CAS  Google Scholar 

  108. Wyman, J. and Gill, S.J. (1990) Binding and linkage: Functional chemistry of biological macromolecules, University Science Books, California

    Google Scholar 

  109. 109. Pfeiffer, H. and Heremans, K. (1999) On the use of term osmotic pressure. This volume.

    Google Scholar 

  110. 110. Frye, K.J. and Royer, C.A. (1997) The kinetic basis for the stabilization of staphylococcal nuclease by xylose, Protein Science 6, 789–793.

    Article  CAS  Google Scholar 

  111. 111. Priev, A., Almagor, A., Yedgar, S. and Gavish, B. (1996) Glycerol decreases the volume and compressibility of protein interior, Biochemistry 35, 2061–2066.

    Article  CAS  Google Scholar 

  112. 112. Privalov, P.L. (1990) Cold denaturation of proteins, Crit. Rev. Biochem. Molec. Biol., 25, 281–30

    Article  CAS  Google Scholar 

  113. 113. Remmele, Jr., R.L., McMillan, P. and Bieber, A. (1990) Raman spectroscopic studies of hen egg-white lysozyme at high temperatures and pressures, J. Prot. Chem. 9, 475-486

    Google Scholar 

  114. 114. Kuhlman, B. and Raleigh, D.P. (1998) Global analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H2O and D2O. Determination of the thermodynamic parameters, ΓH°, ΓS°, and ΓCp° and the evaluation of solvent isotope effects, Protein Science 7, 2405–2412.

    Article  CAS  Google Scholar 

  115. 115. Smeller, L., Goossens, K., and Heremans, K. (1995) Determination of the secondary structure of proteins at high pressure, Vibrational Spectrosc. 8, 199–203.

    Article  CAS  Google Scholar 

  116. 116. Meersman, F., Smeller, L. and Heremans, K. (1999) FTIR as a tool to study cold, heat and pressure denaturation of myoglobin. This volume.

    Google Scholar 

  117. 117. Smeller, L. and Heremans, K. (1999) 2D FT-IR spectroscopy analysis of the pressure-induced changes in proteins, Vibrational Spectrosc., in press

    Google Scholar 

  118. 118. Silva, J.L., Foguel, D., Da Poian, A.T., and Prevelige, P.E. (1996) The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages, Curr. Opin. Struct. Biol. 6, 166–175.

    Article  CAS  Google Scholar 

  119. 119. Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C.F., and Pepys, M.B., (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis, Nature, 385, 787–79

    Article  CAS  Google Scholar 

  120. 120. Fink, A.L. (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid, Folding and design 3, R9-R23.

    Google Scholar 

  121. 121. Payens, T.A.J., and Heremans, K. (1969) Effect of pressure on the temperature-dependent association of β-casein, Biopolymers 8, 335–345.

    Article  CAS  Google Scholar 

  122. 122. Gorovits, B.M. and Horowitz, P.M. (1998) High hydrostatic pressure can reverse aggregation of protein folding intermediates and facilitate acquisition of native structure, Biochemistry 37, 6132–6135.

    Article  CAS  Google Scholar 

  123. 123. Clark, A. H., Saunderson, D.H. and Sugget, A. (1981) Infrared and laser-Raman spectroscopic studies of thermally-induced globular protein gels, Int. J. Pept. Res. 17, 353–364.

    Article  CAS  Google Scholar 

  124. 124. Smeller, L., Rubens, P. and Heremans, K. (1999) Pressure effect on the temperature induced unfolding and tendency to aggregate of myoglobin, Biochemistry, in press

    Google Scholar 

  125. 125. Vermeulen, G. (1999) PhD thesis, Leuven (in Dutch)

    Google Scholar 

  126. Vermeulen, G. and Heremans, K. (1997) FTIR study of pressure and temperature stability of proteins in emulsions and reversed micelles, in: K. Heremans (Ed), High Pressure Research in Bioscience and Biotechnology, Leuven University Press, pp. 67–70.

    Google Scholar 

  127. 127. Balny, C. and Klyachko, N.L. (1999) High hydrostatic pressure and enzymology, This volume.

    Google Scholar 

  128. 128. Paci, E. and B. Velikson, B. (1997) On the volume of macromolecules, Biopolymers 41, 785–797.

    Article  CAS  Google Scholar 

  129. 129. Kitchen, D.B., Reed, L.H. and Levy, R.M. (1992) Molecular dynamics simulation of solvated protein at high pressure, Biochemistry 31, 10083–10093.

    Article  CAS  Google Scholar 

  130. 130. Hünenberger, P.H., Mark, A.E. and van Gunsteren, W.F. (1995) Computational approaches to study protein unfolding: hen egg white lysozyme as a case study, Proteins: Structure, Function and Genetics 21, 196–213.

    Article  Google Scholar 

  131. 131. Paci, E. and Marchi, M. (1996) Intrinsic compressibility and volume compression in solvated proteins by molecular dynamics simulation at high pressure, Proc. Nat. Acad. Sci. USA 93, 11609–11614.

    Article  CAS  Google Scholar 

  132. 132. Floriano, W.B., Nascimento, M.A.C., Domont, G.B. and Goddard III, W.A. (1998) Effects of pressure on the structure of metmyoglobin: molecular dynamics predictions for pressure unfolding through a molten globule intermediate, Protein Science 7, 2301–2313.

    Article  CAS  Google Scholar 

  133. 133. Smeller, L., Rubens, P. and Heremans, K. (1996) High pressure FTIR studies on hemoproteins, in High Pressure Science and Technology, Trzeciakowski, W.A. (Ed.), World Scientific, Signapore, pp. 863–865.

    Google Scholar 

  134. 134. Silverstein, K.A.T., Haymet, A.D.J. and Dill, K.A. (1998) A simple model of water and the hydrophobic effect, J. Am. Chem. Soc. 120, 3166–3175.

    Article  CAS  Google Scholar 

  135. 135. Hummer, G., Garde, S., Garcia, A.E., Paulaitis, M.E. and Pratt, L.R. (1998) The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins, Proc. Nat. Acad Sci. USA 95, 1552–1555.

    Article  CAS  Google Scholar 

  136. 136. Heremans, K. (1982) High pressure effects on proteins and other biomolecules, Ann. Rev. Biophys. Bioeng. 11, 1–21.

    Article  CAS  Google Scholar 

  137. 136. Whitehead, A.N. (1979) Process and Reality, The Free Press, N.Y

    Google Scholar 

  138. 138. Dill, K.A. and Chan, H.S. (1997) From Levinthal to pathways to funnels, Nature Structural Biology 4, 10–19.

    Article  CAS  Google Scholar 

  139. 139. Angell, C.A. (1997) Landscapes with megabasins: Polyamorphism in liquids and biopolymers and the role of nucleation in folding and folding diseases, Physica D 107, 122–142.

    Article  CAS  Google Scholar 

  140. 140. Panick, G., Malessa, R., Winter, R., Rapp, G., Frye, K.J. and Royer, C.A. (1998) Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of Staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy, J. Mol. Biol. 275, 389–402.

    Article  CAS  Google Scholar 

  141. 141. Weisenhorn, A.L., Khorsandi, M., Kasas, S., Gotzos, V. and Butt, H.J. (1993) Deformation and height anomaly of soft surfaces studied with an AFM, Nanotechnology 4, 106–113.

    Article  CAS  Google Scholar 

  142. 142. Kauzmann, W. (1993) Reminiscences from a life in protein physical chemistry, Protein Science 2, 671–691.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heremans, K. (1999). The Phase Diagram and the Pressure-Temperature Behavior of Proteins. In: Winter, R., Jonas, J. (eds) High Pressure Molecular Science. NATO Science Series, vol 358. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4669-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4669-2_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5807-7

  • Online ISBN: 978-94-011-4669-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics