Skip to main content

Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T

  • Chapter
Book cover Fracture Scaling

Abstract

A set of lab- to structural-scale (0.5 < L < 80 m) in-situ full thickness (1.8 m) fracture tests were conducted on first-year sea ice at Resolute, N.W.T. using self-similar (plan view) edge-cracked square plates. With a size range of 1:160, the data is used, via size effect analyses, to evaluate the influence of scale effects on the fracture behavior of sea ice over the range 10-1 m (laboratory) to 100 m and to predict the scale effect on tensile strength up to ≈ 1000 m. Details of this large-scale sea ice fracture test program are presented in this paper. The experimental results are presented as well as the fracture modeling of the data. The influence of scale on the ice strength and fracture toughness is dramatic. The applicability of various size effect laws are investigated and criteria for LEFM test sizes are presented. For the thick first-year sea ice tested, the size-independent fracture toughness is of order 250 kPa√m, not the 115 kPa√m that is commonly used. The number of grains spanned by the associated test piece is 200, much larger than the number 15 typically quoted for regular tension-compression testing. The size-independent fracture energy is 15 J/m2, while the requisite LEFM test size for the edge-cracked square plate geometry (for loading durations of less than 600 s and an average grain size of 1.5 cm), is 3 m square. Size effect analyses of sub-ranges of the data show that unless the specimen sizes tested are themselves sufficiently large, the true nature of the scale effect is not revealed, which was a concern raised by Leicester 25 years ago. In the case of the fracture tests reported in this paper, based on the lab-scale and field-scale strength data measured between 0.1 and 3 m and using Bažant’s size effect law, it is possible to accurately predict the tensile strengths for all of the remaining tests, up to and including 80 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdel-Tawab, K. and Rodin, G.J. (1993a). On the relevance of linear elastic fracture mechanics to ice. International Journal of Fracture 62, 171–181.

    Article  ADS  Google Scholar 

  • Abdel-Tawab, K. and Rodin, G.J. (1993b). Interpretation of results of the fracture toughness tests on ice. Ice Mechanics — 1993 (Edited by J.P. Dempsey, Z.P. Bažant, Y.D.S. Rajapakse and S. Shyam Sunder), ASME AMD, Vol. 163, New York, 49–59.

    Google Scholar 

  • ASTM-E399 (1981). Standard Test Methods for Plane Strain Fracture Toughness of Metallic Materials. American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  • Adamson, R.M., Shapiro, L.H. and Dempsey, J.P. (1997). Core-based SCB fracture of aligned first-year sea ice (Phases III and IV). ASCE Journal of Cold Regions Engineering 11, 30–44.

    Article  Google Scholar 

  • Adamson, R.M., Dempsey, J.P., Mulmule, S.V., DeFranco S.J. and Xie, Y. (1995). Large-scale in-situ ice experiments. Part I: Experimental aspects. Ice Mechanics — 1995 (Edited by J.P. Dempsey and Y.D.S. Rajapakse), ASME AMD, Vol. 207, New York, 107–128.

    Google Scholar 

  • Bažant, Z.P. (1984). Size effect in blunt fracture: Concrete, rock, metal. ASCE Journal of Engineering Mechanics 110, 518–535.

    Article  Google Scholar 

  • Bažant, Z.P. (1992). (ed). Fracture Mechanics of Concrete Structures,Elsevier Applied Science.

    Google Scholar 

  • Bažant, Z.P. and Xiang, Y. (1997). Size effect in compression fracture: Splitting crack band propagation. ASCE Journal of Engineering Mechanics 123, 162–172.

    Article  Google Scholar 

  • Bažant, Z.P., Kim, J.K. and Pfeiffer, P.A. (1986). Nonlinear fracture properties from size effect tests. ASCE Journal of Structural Engineering 112, 289–307.

    Article  Google Scholar 

  • Bažant, Z.P. and Pfeiffer, P.A. (1987). Determination of fracture energy properties from size effect and brittleness number. ACI Materials Journal 84, 463–480.

    Google Scholar 

  • Bažant, Z.P., Bai, S.P. and Gettu, R. (1993). Fracture of rock, effect of loading rate. Engineering Fracture Mechanics 45, 393–398.

    Article  Google Scholar 

  • Bažant, Z.P., Kazemi, M.T., Hasegawa, T. and Mazars, J. (1991). Size effect in Brazilian split-cylinder tests: Measurments and fracture analysis. ACI Materials Journal 88, 325–332.

    Google Scholar 

  • Bentley, D.L. (1992). Fracture of first-year sea ice: Preliminary results. Proceedings of the 11th International OMAE Conference, Tokyo, Japan, Vol. IV, 343–348.

    Google Scholar 

  • Bentley, D.L., Dempsey, J.P., Sodhi, D.S. and Wei, Y. (1989). Fracture of columnar freshwater ice from large scale DCB tests. Cold Regions Science and Engineering 17, 7–20.

    Article  Google Scholar 

  • Bienawski, Z.T. (1968). The effect of specimen size on compressive strength of coal. International Journal of Rock Mechanics and Mining Science 5, 325–335.

    Article  Google Scholar 

  • Brock, D. (1982). Elementary Engineering Fracture Mechanics, Martinus-Nijhoff.

    Book  Google Scholar 

  • Carpinteri, A., Chiaia, B. and Ferro, G. (1994). Multifractal scaling law for the nominal strength variation of concrete. Size Effect in Concrete Structures (Edited by H. Mihashi, H. Okamura and Z.P. Bažant), E&FN Spon. London, 193–205.

    Google Scholar 

  • Carpinteri, A., Chiaia, B. and Ferro, G. (1995a). Multifractal Scaling Law: An Extensive Application to Nominal Strength Size Effect of Concrete Structures. Departmental Report, Politechnico Di Torino, Dipartimento Di Ingegneria Strutturale, Italy.

    Google Scholar 

  • Carpinteri, A., Chiaia, B. and Ferro, G. (1995b). Size effects on nominal tensile strength of concrete structures: Multifractality of material ligaments and dimensional transition from order to disorder. Materials and Structures 28, 311–317.

    Article  Google Scholar 

  • Danilenko, V.I. and Rogachko, S.I. (1991). The experimental determination of Okhotsk sea ice fracture toughness. Proceedings of the 11th International POAC Conference, St John’s, Newfoundland, Vol. I, 293–304.

    Google Scholar 

  • DeFranco, S.J. and Dempsey, J.P. (1991). Crack growth stability in saline ice. Mechanics of Creep Brittle Materials - 2 (Edited by A.C.F. Cocks and A.R.S. Ponter), Elsevier Applied Science, 25–36.

    Chapter  Google Scholar 

  • DeFranco, S.J. and Dempsey, J.P. (1992). Nonlinear fracture analysis of saline ice: Size, rate, and temperature effects. Proceedings of the Eleventh IAHR Ice Symposium, Banff, Alberta, Vol. 3, 1420–1435.

    Google Scholar 

  • DeFranco, S.J. and Dempsey, J.P. (1994). Crack propagation and fracture resistance in saline ice. Journal of Glaciology 40, 451–462.

    ADS  Google Scholar 

  • DeFranco, S.J., Wei, Y. and Dempsey, J.P. (1991). Notch acuity effects on fracture toughness of saline ice. Annals of Glaciology 15, 230–235.

    ADS  Google Scholar 

  • Dempsey, J.P. (1991). The fracture toughness of ice. Ice-Structure Interaction (Edited by S.J. Jones, R.F. McKenna, J. Tillotson and I.J. Jordaan), Springer-Verlag, Berlin, 109–145.

    Chapter  Google Scholar 

  • Dempsey, J.P. (1996). Scale effects on the fracture of ice. The Johannes Weertman Symposium (Edited by R.J. Arsenault, D.M. Cole, T. Gross, G. Kostorz, P.K. Liaw, S. Parameswaran and H. Sizek), The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 351–361.

    Google Scholar 

  • Dempsey, J.P., Adamson, R.M. and DeFranco, S.J. (1995). Fracture analysis of base-edge-cracked reverse-tapered plates. International Journal of Fracture 69, 281–294.

    Article  ADS  Google Scholar 

  • Dempsey, J.P., Wei, Y. and DeFranco, S.J. (1992). Notch sensitivity and brittleness in fracture testing of S2 columnar freshwater ice. International Journal of Fracture 53, 101–120.

    Google Scholar 

  • Dempsey, J.P., DeFranco, S.J., Adamson, R.M. and Mulmule, S.V. (1999). Scale effects on the in-situ tensile strength and fracture of ice. Part I: Large grained freshwater ice at Spray Lakes Reservoir, Alberta. International Journal of Fracture (this issue), 325–345.

    Google Scholar 

  • Goldstein, R.V. and Osipenko, N.M. (1983a). Fracture mechanics and some questions of ice fracture. Mechanics and Physics of Ice (Edited by R.V. Goldstein), Nauka, Moscow, 31–62 (in Russian).

    Google Scholar 

  • Goldstein, R.V. and Osipenko, N.M. (1983b). Some aspects of fracture mechanics of ice cover. Proceedings of the 7th International POAC Conference, Helsinki, Finland, Vol. 3, 132–143.

    Google Scholar 

  • Hatton, C.G., Main, I G and Meredith, P.G. (1994). Non-universal scaling of fracture length and opening displacement. Nature 367, 160–162.

    Article  ADS  Google Scholar 

  • Heuze, F.E. (1980). Scale effects in the determination of rock mass strength and deformability. Rock Mechanics 12, 167–192.

    Article  Google Scholar 

  • Jenq, Y.S. and Shah, S.P. (1985). Two parameter fracture model for concrete. ASCE Journal of Engineering Mechanics 111, 1227–1241.

    Article  Google Scholar 

  • Karihaloo, B.L. and Nallathambi, R (1987). Notched beam test: Mode I facture toughness. Draft report to RILEM Committee 89-FMT, Fracture Mechanics of Concrete: Test Method.

    Google Scholar 

  • Kennedy, K.P., Mamer, K.J., Dempsey, J.P., Adamson, R.M., Spencer, P.A. and Masterson, D.M. (1994). Large-scale ice fracture experiments: Phase 2. Proceedings of the Twelfth IAHR Ice Symposium, Trondheim, Norway, Vol. 1, 315–324.

    Google Scholar 

  • Kim, J.K., Park, Y.D. and Eo, S.H. (1993). Size effect in concrete specimen with dissimilar initial cracks. Size Effect in Concrete Structures (Edited by H. Mihashi, H. Okamura and Z.P. Bažant), E&FN Spon. London, 181–192.

    Google Scholar 

  • Lazo, J. (1994). Fracture of Saline Ice: Thickness, Orientation and Reversed-Direct Tension Testing. M.S. Thesis, Clarkson University.

    Google Scholar 

  • LeClair, E.S., Adamson, R.M. and Dempsey, J.P. (1977). Core-based SCB fracture of aligned first year sea ice (Phase VI). ASCE Journal of Cold Regions Engineering 11, 45–58.

    Article  Google Scholar 

  • Leicester, R.H. (1973). Effect of Size on the Strength of Structures. CSIRO Australian Forest Products Laboratory, Division of Building Research Technological Paper No. 71, 1–13.

    Google Scholar 

  • Mulmule, S.V. and Dempsey, J.P. (1997). Stress-separation curves for saline ice using the fictitious crack model. ASCE Journal of Engineering Mechanics 123, 870–877.

    Article  Google Scholar 

  • Mulmule, S.V. and Dempsey, J.P. (1998). A viscoelastic fictitious crack model for the fracture of sea ice. Mechanics of Time-Dependent Materials 1, 331–356.

    Article  ADS  Google Scholar 

  • Mulmule, S.V. and Dempsey, J.P. (1999a). Scale effects on sea ice fracture. Mechanics of Cohesive-Frictional Materials 4 (In press).

    Google Scholar 

  • Mulmule, S.V. and Dempsey, J.P. (1999b). LEFM size requirements for the fracture testing of sea ice. International Journal of Fracture (In press).

    Google Scholar 

  • Mulmule, S.V., Adamson, R.M. and Dempsey, J.P. (1995). Large-scale in-situ fracture experiments. Part II: Modeling aspects. Ice Mechanics — 1995 (Edited by J.P. Dempsey and Y.D.S. Rajapakse), ASME AMD-Vol. 207, New York, 107–128.

    Google Scholar 

  • Nallathambi, P. and Karihaloo, B.L. (1986). Determination of specimen-size independent fracture toughness of plain concrete. Magazine of Concrete Research 38, 67–76.

    Article  Google Scholar 

  • Parsons, B.L., Snellen, J.B. and Hill, B. (1986). Physical modeling and the fracture toughness of sea ice. Proceedings of the 5th International OMAE Conference, Tokyo, Japan, Vol. IV, 358–364.

    Google Scholar 

  • Parsons, B.L., Snellen, J.B. and Hill, B. (1987). Preliminary measurements of terminal crack velocity in ice. Cold Regions Science and Technology 13,233–238.

    Article  Google Scholar 

  • Parsons, B.L., Snellen, J.B. and Muggeridge, D.B. (1988). The initiation and arrest stress intensity factors of first-year columnar sea ice. Proceedings of the 9th IAHR Ice Symposium, Sapporo, Japan, Vol. I, 502–512.

    Google Scholar 

  • Parsons, B.L., Williams, F.M., Everard, J. and Slade, T. (1992). The influence of aging on the strength of prepared cracks in first year sea ice. Proceedings of the 13th International OMAE Conference, Tokyo, Japan, Vol. IV, 357–363.

    Google Scholar 

  • Parsons, B.L., Williams, F.M., Everard, J. and Slade, T. (1993). Notch sensitivity of first year sea ice. ASCE Journal of Engineering Mechanics 119, 1303–1313.

    Article  Google Scholar 

  • Planas, J. and Elices, M. (1991). Nonlinear fracture of cohesive materials. International Journal of Fracture 51, 139–157.

    Google Scholar 

  • Schulson, E.M. (1997). The brittle failure of ice under compression. Journal of Physical Chemistry B 101, 6254–6258.

    Article  Google Scholar 

  • Shapiro, L.H., Hoskins, E.R., Nelson, R.D. and Metzner, R.C. (1979). Flatjack methods of in-situ measurements of the mechanical properties of sea ice. ASME Journal of Energy Resources Technology 101, 196–202.

    Article  Google Scholar 

  • Shapiro, L.H., Metzner, R.C. and Johnson, J.B. (1981). Fracture Toughness of Sea Ice. Report submitted to the Shell Development Company.

    Google Scholar 

  • Shen, W. and Lin, S.Z. (1986). Fracture toughness of Bohai Bay sea ice. Proceedings of the 5th International OMAE Symposium, Tokyo, Japan, Vol. IV, 354–357.

    Google Scholar 

  • Shen, W., Lin, S.Z., Gu, P. and Zhou, X.A. (1991). The study of fracture toughness of Bohai sea ice. Ice-Structure Interaction (Edited by S.J. Jones, R.F. McKenna, J. Tillotson and I.J. Jordaan), Springer-Verlag, Berlin, 147–164.

    Chapter  Google Scholar 

  • Smith, E. (1995). The size effect expression for an elastic-softening material. Mechanics of Materials 19, 261–270.

    Article  Google Scholar 

  • Stehn, L. (1994). Fracture toughness and crack-growth of brackish ice using chevron-notched specimens. Journal of Glaciology 40, 415–426.

    ADS  Google Scholar 

  • Timco, G.W. and Frederking, R.M.W. (1983). Flexural strength and fracture toughness of sea ice. Cold Regions Science and Technology 8, 35–41.

    Article  Google Scholar 

  • Tuhkuri, J. (1987). The applicability of LEFM and the fracture toughness of sea ice. Proceedings of the 9th International POAC Conference, Fairbanks, Alaska, Vol. I, 21–32.

    Google Scholar 

  • Urabe, N. and Inoue, M. (1986). Mechanical properties of Antarctic sea ice. Proceedings of the 5th International OMAE Symposium, Tokyo, Japan, Vol. IV, 303–309.

    Google Scholar 

  • Urabe, N. and Inoue, M. (1987). Mechanical properties of Antarctic sea ice (II). Proceedings of the 6th International OMAE Symposium, Houston, Texas, Vol. IV, 239–244.

    Google Scholar 

  • Urabe, N. and Yoshitake, A. (1981a). Strain rate dependent fracture toughness (K IC ) of pure ice and sea ice. Proceedings of the 6th IAHR Ice Symposium, Quebec City, Vol. II, 551–563.

    Google Scholar 

  • Urabe, N. and Yoshitake, A. (1981b). Fracture toughness of sea ice — In-situ measurement and its application. Proceedings of the 6th International POAC Conference, Vol. I, 356–365.

    Google Scholar 

  • Urabe, N., Iwasaki, T. and Yoshitake, A. (1980). Fracture toughness of sea ice. Cold Regions Science and Technology 3, 29–37.

    Article  Google Scholar 

  • Urabe, N., Yoshitake, A., Iwasaki, T. and Kawahara, M. (1983). Parameters on fracture strength of sea ice. ASME Journal of Energy Resources Technology 105, 12–16.

    Article  Google Scholar 

  • Vaudrey, K.D. (1977). Ice Engineering-Study of Related Properties of Floating Sea Ice Sheets and Summary of Elastic and Viscoelastic Analyses. Technical Report 860, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, California.

    Google Scholar 

  • Vincent, M.R. and Dempsey, J.P. (1998). Fracture energy of saline ice. Ice in Surface Waters (Edited by H.T. Shen), Balkema, Rotterdam, Vol. I, 567–573.

    Google Scholar 

  • Wei, Y., Johnston, M. and Dempsey, J.P. (1995). A grain multipication mechanism for the formation of transition zones in first-year sea ice. Cold Regions Science and Technology 23, 367–375.

    Article  Google Scholar 

  • Williams, F.M., Kirby, C. and Slade, T. (1993). Strength and Fracture Toughness of First-Year Arctic Sea Ice. Report Tr-1993–12, Institute for Marine Dynamics, NRC Canada.

    Google Scholar 

  • Xie, Y. and Farmer, D.M. (1993). The Sound of Ice Fracturing Due to Propagating Tensile Failure. ONR Report.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dempsey, J.P., Adamson, R.M., Mulmule, S.V. (1999). Scale effects on the in-situ tensile strength and fracture of ice. Part II: First-year sea ice at Resolute, N.W.T. In: Bažant, Z.P., Rajapakse, Y.D.S. (eds) Fracture Scaling. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4659-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4659-3_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5965-7

  • Online ISBN: 978-94-011-4659-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics