Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 360))

Abstract

Many applications of crystalline materials depend not just on the underlying molecular structures, but equally on the alignment of molecules in the crystals. An understanding of molecular arrangements is critical to the design of materials with specific bulk properties. Crystal structure reports have traditionally contained little significant discussion (frequently no mention at all) of molecular arrangements in the crystal, presumably because the motivation for many studies was the elucidation of some molecular feature. The Cambridge Structural Database [1] makes available crystal data for many thousands of organic and organometallic crystal structures, together with continually evolving retrieval and analysis software. The commitment at the Data Centre to the development of increasingly powerful software for 3-dimensional search, analysis, and display is changing the landscape of the study of crystal packing. This superb set of tools facilitates many important and innovative programs of study that are slowly but surely increasing our understanding of molecular solid state structure. This systematic study is, in turn, fueling significant progress in crystal engineering, one of the major themes of this School. Useful reviews in this area include those by Desiraju [2] and by Braga and Grepioni [3] (both of these surveying a broad range of intermolecular interactions) and those by Aakeröy [4, 5] and Zaworotko [6] (focusing more specifically on the exploitation of hydrogen-bonding as a design tool).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, F. H. and Kennard, O. (1993) 3D Search and research using the Cambridge Structural Database, Chemical Design Automation News, 8, 31–37.

    Google Scholar 

  2. Desiraju, G. R. (1995) Supramolecular synthons in crystal engineering — a new organic synthesis, Angew. Chem. Int. Ed. Engl. 34, 2311–2327; Angew. Chem. 107, 2541-2558. See also reference 10.

    Article  CAS  Google Scholar 

  3. Braga, D. and Grepioni, F. (1993) Intermolecular interactions and supramolecular organization in organometallic solids, Chem. Commun. 571–578.

    Google Scholar 

  4. Aakeröy, C. B. and Seddon, K. R. (1993) The hydrogen bond and crystal engineering, Chem. Soc. Reviews, 22, 397–407.

    Article  Google Scholar 

  5. Aakeröy, C. B. (1997) Crystal engineering: Strategies and architectures, Acta Cryst. B53, 569–586.

    Google Scholar 

  6. Subramanian, S. and Zaworotko, M. J. (1994) Exploitation of the hydrogen bond: Recent developments in the context of crystal engineering, Coord. Chem. Reviews, 137, 357–401.

    Article  CAS  Google Scholar 

  7. Brock, C. P. and Dunitz, J. D. (1994) Towards a grammar of crystal packing, Chem. Mat. 6, 1118–1127.

    Article  CAS  Google Scholar 

  8. See references 15-51 in Reference [7].

    Google Scholar 

  9. Filippini, G. and Gavezzotti, A. (1991) A quantitative analysis of the relative importance of symmetry operators in organic molecular crystals, Acta Cryst. B48, 230–234.

    Google Scholar 

  10. Wilson, A.J.C. (1993) Space groups rare for organic structures. III. Symmorphism and inherent molecular symmetry, Acta Cryst. A49, 795–806.

    CAS  Google Scholar 

  11. Sona, V. and Gautham, N. (1992) Conformational similarities between crystallographically independent molecules in organic crystals, Acta Cryst. B48, 111–113.

    CAS  Google Scholar 

  12. Gautham, N. (1992) A conformational comparison of crystallographically independent molecules in organic crystals with achiral space groups, Acta Cryst. B48, 337–338.

    CAS  Google Scholar 

  13. Karthe, P., Sadavasan, C. and Gautham, N. (1993) Packing interaction of crystallographically independent molecules in organic crystals, Acta Cryst. B49, 1069–1071.

    CAS  Google Scholar 

  14. Desiraju, G. R., Calabrese, J. C, and Harlow, R. L. (1991) Pseudoinversion centers in space group P1 and a redetermination of the crystal structure of 3,4-dimethoxycinnamic acid. A study of non-crystallographic symmetry, Acta Cryst. B49, 77–86.

    Google Scholar 

  15. Wheeler, K. A. and Davis, R. E. unpublished results. Some of these results were reported at meetings of the American Crystallographic Association (Albuquerque, 1993, Abstract PH02; Atlanta, 1994, Abstract U02).

    Google Scholar 

  16. Desiraju, G. R. (1989) Crystal Engineering. The Design of Organic Solids. Elsevier Science Publishers B.V., Amsterdam.

    Google Scholar 

  17. Lahav, M. and Leiserowitz, L. (1996). Tailor-made auxiliaries for the control of nucleation, growth and dissolution of crystals, in Tsoucaris, G., Atwood, J. L., and Lipkowski, J. (eds.) Crystallography of Supramolecular Compounds, NATO ASI Series, Kluwer Academic Publishers, Dordrecht, pp. 431–507.

    Google Scholar 

  18. Jones, W., Theocharis, C. R., Thomas, J. M. and Desiraju, G. R. (1983) Structural mimicry and the photoreactivity of organic solids, J. Chem. Soc., Chem. Commun., 1443–1444.

    Google Scholar 

  19. Theocharis, C. R., Desiraju, G. R. and Jones, W. (1984) The use of mixed crystals for engineering organic solid-state reactions: Application to benzylbenzylidenecyclopentanones, J. Amer. Chem. Soc., 106, 3606–3609.

    Article  CAS  Google Scholar 

  20. Sarma. J. A. R. P. and Desiraju, G. R. (1986) Molecular discrimination in the formation of mixed crystals of some substituted chlorocinnamic acids, J. Amer. Chem. Soc, 108, 2791–2793.

    Article  CAS  Google Scholar 

  21. Centnerszwer, M. (1899) On the melting points of mixtures of optical antipodes, Z. Physk. Chem., 29, 715.

    CAS  Google Scholar 

  22. Pasteur, L. (1853). Ann. Chim. Phys., Ser 3, 38, 437.

    Google Scholar 

  23. This point is discussed in reference 7, page 1127. A common type of exception, not explicitly mentioned there, would be the cocrystallization of solute and solvent to form solvated crystals, in which the solvent often plays only a spacefilling role [24].

    Google Scholar 

  24. van der Sluis, P. and Kroon, J. (1989) Solvents and X-ray crystallography, J. Cryst. Growth, 97, 645–656.

    Article  Google Scholar 

  25. Jacques, J., Collet, A. and Wilen, S. H. (1981) Enantiomers, Racemates, and Resolutions, John Wiley & Sons, New York, pp. 100–103.

    Google Scholar 

  26. Fredga, A. (1960). Steric correlations by the quasi-racemate method, Tetrahedron, 8, 126–144.

    Article  CAS  Google Scholar 

  27. Fredga, A. (1973). Quasiracemic compounds and their use for studying the configuration of optically active compounds, Bull. Soc. Chim. Fr., 174–182.

    Google Scholar 

  28. Karle, I. and Karle, J. (1966) The crystal structure of the quasi-racemate from (+)-m-methoxyphenoxypropionic acid and (-)-m-bromophenoxypropionic acid J. Amer. Chem. Soc, 88, 24–27.

    Article  CAS  Google Scholar 

  29. Misra, R., Wong-Ng, W., Chang, P.-T., McLean, S. and Nyburg, S. C. (1980) Crystal structure of two quasi-racemates of (-)-podopetaline and (-)-ormoxanine isolated from Podopetalum ormondii; the absolute configuration of (-)-ormosanine, J. Chem. Soc, Chem. Commun., 659–660.

    Google Scholar 

  30. Gillard, R. D., Payne, N. C. and Phillips, D. C. (1968) Optically active coordination compounds. Part XIII. An inorganic quasi-racemate, J. Chem. Soc. A., 973–974.

    Google Scholar 

  31. Bilton, M. S. (1982) (-)4o9-R, S-[(R-N(2-Aminopropyl)salicylaldiminato)-chromiumIII)] perchlorate, Cryst. Struct. Commun., 11, 755–762.

    CAS  Google Scholar 

  32. Whuler, A., Brouty, C, Spinat, P. and Herpin, P. (1976) Structural study of the active racemate hydrate [(+)-Coen3(-)-Cren3]Cl6-6.1H2O, Acta Cryst., B32, 194–198.

    CAS  Google Scholar 

  33. Chemla, D. S. and Zyss, J., (eds.) (1996) Non-Linear Optical Properties of Organic Molecules and Crystals, Vols 1 and 2, Academic Press, New York.

    Google Scholar 

  34. Curtin, D. Y. and Paul, I. C. (1981) Chemical consequences of the polar axis in organic solid-state chemistry, Chem. Rev., 81, 525–541.

    Article  CAS  Google Scholar 

  35. The relationships between molecular shape and crystal packing were elegantly discussed in the classic book by Kitaigorodsky [36].

    Google Scholar 

  36. Kitaigorodsky, A. I. (1973) Molecular Crystals and Molecules, Academic Press, New York.

    Google Scholar 

  37. Whitesell, J. K., Davis, R. E., Wong, M.-S. and Chang, N.-L. (1993). Shape mimicry as a design tool in crystal engineering, J. Phys. D: Appl. Phys. 26, B32–B34.

    Article  CAS  Google Scholar 

  38. Whitesell, J. K., Davis, R. E., Wong, M.-S. and Chang, N.-L. (1994) Molecular Crystal Engineering by Shape Mimicry, J. Amer. Chem. Soc, 116, 523–527.

    Article  CAS  Google Scholar 

  39. Davis, R. E., Whitesell, J. K., Wong, M.-S. and Chang, N.-L. (1996) Molecular shape as a design criterion in crystal engineering, Chapter 3 in G. R. Desiraju (ed.), The Crystal as a Supramolecular Entity, John Wiley & Sons, Chichester.

    Google Scholar 

  40. This terminology borrows the title of Desiraju’s Chapter 4 in reference 16.

    Google Scholar 

  41. Whitesell, J. K. and Wong, M.-S. (1994) Asymmetric synthesis of chiral sulfinate esters and sulfoxides. Synthesis of Sulforaphane, J. Org. Chem, 59, 597–601.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Davis, R.E., Whitesell, J.K., Wheeler, K.A. (1999). Molecular Shape as a Design Criterion. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics