Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 360))

  • 392 Accesses

Abstract

There have been two main approaches to modelling the weak intermolecular forces between closed shell molecules for simulating the properties of the molecular solid, liquid and gas. Quite detailed model intermolecular potentials, specific to each molecule, are used for small polyatomics, such as HF, Cl2 and water. These model potentials are often derived, at least in part, from ab initio calculations, and are tested for their ability to reproduce the spectra of van der Waals dimers or molecular beam experiments as well as condensed phase simulations. In contrast, the models for intermolecular forces used to simulate organic and biochemical interactions are mainly derived by assuming that each intermolecular atom-atom interaction is transferable between different molecules. Such models are usually derived empirically, by fitting to a range of experimental data such as molecular crystal structures. Such model potentials are now used to improve our understanding of biochemical interactions, including drug design. The realism and reliability of such simulations depends fundamentally on the accuracy of the model for the intermolecular forces, and thus we seek more accurate model potentials for organic molecules. Most of the recent progress towards this goal has come from extending the ideas and techniques, which are used to develop accurate potentials for small polyatomics, to larger molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. J. Stone, (1996) The Theory of Intermolecular Forces, vol. 32, 1st ed., Oxford: Clarendon Press, Oxford.

    Google Scholar 

  2. G. C. Maitland, M. Rigby, E. B. Smith and W. A. Wakeham, (1981) Intermolecular Forces. Their Origin and Determination., vol. 3. Oxford: Clarendon Press, Oxford.

    Google Scholar 

  3. A. J. Pertsin and A. I. Kitaigorodsky, (1987) The Atom-Atom Potential Method. Applications to Organic Molecular Solids, vol. 43. Berlin: Springer-Verlag, Berlin.

    Google Scholar 

  4. A. T. Hagler, E. Huler and S. Lifson, (1974) Energy functions for peptides and proteins I Derivation of a consistent force-field including the hydrogen bond from amide crystals, J. Amer. Chem. Soc, 96, 5319–5327.

    Article  CAS  Google Scholar 

  5. D. E. Williams and S. R. Cox, (1984) Nonbonded Potentials For Azahydrocarbons — the Importance of the Coulombic Interaction, Acta Crystallographica Section B-Structural Science, 40, 404–417.

    Article  Google Scholar 

  6. G. Filippini and A. Gavezzotti, (1993) Empirical Intermolecular Potentials For Organic-Crystals — the 6-Exp Approximation Revisited, Acta Crystallographica Section B-Structural Science, 49, 868–880.

    Article  Google Scholar 

  7. A. Gavezzotti and G. Filippini, (1994) Geometry of the Intermolecular X-H…Y (X, Y=N, O) Hydrogen-Bond and the Calibration of Empirical Hydrogen-Bond Potentials, Journal of Physical Chemistry, 98, 4831–4837.

    Article  CAS  Google Scholar 

  8. J. G. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt, (1997) Ab Initio methods applied to hydrogen-bonded systems, in D. Hadzi, (ed.)Theoretical Treatments of Hydrogen Bonding. Chichester: John Wiley and Sons, Chichester, pp. 13–47.

    Google Scholar 

  9. I. C. Hayes and A. J. Stone, (1984) An Intermolecular Perturbation-Theory For the Region of Moderate Overlap, Molecular Physics, 53, 83–105.

    Article  CAS  Google Scholar 

  10. A. J. Stone, (1993) Computation of Charge-Transfer Energies By Perturbation-Theory, Chemical Physics Letters, 211, 101–109.

    Article  CAS  Google Scholar 

  11. B. Jeziorski, R. Moszynski and K. Szalewicz, (1994) Perturbation-Theory Approach to Intermolecular Potential-Energy Surfaces of van der Waals Complexes, Chemical Reviews, 94, 1887–1930.

    Article  CAS  Google Scholar 

  12. A. D. Buckingham, P. W. Fowler and A. J. Stone, (1986) Electrostatic Predictions of Shapes and Properties of van der Waals Molecules, International Reviews in Physical Chemistry, 5, 107–114.

    Article  CAS  Google Scholar 

  13. A. C. Legon and D. J. Millen, (1987) Directional Character, Strength and Nature of the Hydrogen-Bond in Gas-Phase Dimers, Accounts of Chemical Research, 20, 39–46.

    Article  CAS  Google Scholar 

  14. G. J. B. Hurst, P. W. Fowler, A. J. Stone and A. D. Buckingham, (1986) Intermolecular Forces in van der Waals Dimers, International Journal of Quantum Chemistry, 29, 1223–1239.

    Article  CAS  Google Scholar 

  15. I. Nobeli, S. L. Price, J. P. M. Lommerse and R. Taylor, (1997) Hydrogen bonding properties of oxygen and nitrogen acceptors in aromatic heterocycles, Journal of Computational Chemistry, 18, 2060–2074.

    Article  CAS  Google Scholar 

  16. I. Nobeli, S. L. Yeoh, S. L. Price and R. Taylor, (1997) On the hydrogen bonding abilities of phenols and anisoles, Chemical Physics Letters, 280, 196–202.

    Article  CAS  Google Scholar 

  17. I. J. Bruno, J. C. Cole, J. P. Lommerse, R. S. Rowland, R. Taylor and M. L. Verdonk, (1997) IsoStar: A library of information about nonbonded interactions, J. Comp. Aided Molecular Design, 11, 525–537.

    Article  CAS  Google Scholar 

  18. S. L. Price, (1996) Anisotropic Atom-Atom Potentials, Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties, 73, 95–106.

    CAS  Google Scholar 

  19. K. B. Wiberg and P. R. Rablen, (1993) Comparison of Atomic Charges Derived Via Different Procedures, Journal of Computational Chemistry, 14, 1504–1518.

    Article  CAS  Google Scholar 

  20. J. G. Vinter, (1996) Extended Electron Distributions Applied to the Molecular Mechanics of Some Intermolecular Interactions. 2. Organic-Complexes, Journal of Computer-Aided Molecular Design, 10, 417–426.

    Article  CAS  Google Scholar 

  21. R. W. Dixon and P. A. Kollman, (1997) Advancing beyond the atom-centered model in additive and nonadditive molecular mechanics, Journal of Computational Chemistry, 18, 1632–1646.

    Article  CAS  Google Scholar 

  22. A. J. Stone and S. L. Price, (1988) Some New Ideas in the Theory of Intermolecular Forces — Anisotropic Atom Atom Potentials, Journal of Physical Chemistry, 92, 3325–3335.

    Article  CAS  Google Scholar 

  23. S. L. Price, A. J. Stone, J. Lucas, R. S. Rowland and A. E. Thornley, (1994) The Nature of-C1-…C1-Intermolecular Interactions, Journal of the American Chemical Society, 116, 4910–4918.

    Article  CAS  Google Scholar 

  24. A. J. Stone and C. S. Tong, (1994) Anisotropy of Atom-Atom Repulsions, Journal of Computational Chemistry, 15, 1377–1392.

    Article  CAS  Google Scholar 

  25. R. J. Wheatley and S. L. Price, (1990) An Overlap Model For Estimating the Anisotropy of Repulsion, Molecular Physics, 69, 507–533.

    Article  CAS  Google Scholar 

  26. R. J. Wheatley and J. B. O. Mitchell, (1994) Gaussian Multipoles in Practice — Electrostatic Energies For Intermolecular Potentials, Journal of Computational Chemistry, 15, 1187–1198.

    Article  CAS  Google Scholar 

  27. C. Millot and A. J. Stone, (1992) Towards an Accurate Intermolecular Potential For Water, Molecular Physics, 77, 439–462.

    Article  CAS  Google Scholar 

  28. R. J. Wheatley and S. L. Price, (1990) A Systematic Intermolecular Potential Method Applied to Chlorine, Molecular Physics, 71, 1381–1404.

    Article  CAS  Google Scholar 

  29. D. S. Coombes, S. L. Price, D. J. Willock and M. Leslie, (1996) Role of Electrostatic Interactions in Determining the Crystal-Structures of Polar Organic-Molecules — a Distributed Multipole Study, Journal of Physical Chemistry, 100, 7352–7360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Price, S.L. (1999). Theoretical Approaches to the Study of Non-Bonded Interactions. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics