Skip to main content

Part of the book series: NATO Science Series ((NSSE,volume 360))

Abstract

Hydrogen bonding is perhaps the most important and most widely studied of all intermolecular interactions [1]. This is particularly recognized today in the fields of supramolecular chemistry [2] and molecular biology [lc]. Much of the emphasis to date has been on the involvement of hydrogen bonds in systems of an organic or biological nature, while comparatively less attention has been given until very recently to hydrogen bonds in inorganic chemistry [3]. This article is intended to introduce the reader to a pervasive aspect of the latter, namely the role that metal centres can play in hydrogen bonding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For example, see (a) Pimentel, G. C. and McClellan, A. L. (1960) The Hydrogen Bond, W. H. Freeman, San Fransisco. (b) Schuster, P., Zundel, G., and Sandorfy, C. (eds.), (1976) The Hydrogen Bond: Recent Developments in Theory and Experiment, North-Holland, Amsterdam. (c) Jeffrey, G. A. and Saenger, W. (1991) Hydrogen Bonding in Biological Structures, Springer-Verlag, Berlin. (d) Jeffrey, G. A. (1997) An Introduction to Hydrogen Bonding, Oxford University Press, Oxford.

    Google Scholar 

  2. Desiraju, G. R. (1989) Crystal Engineering: The Design of Organic Solids, Elsevier, Amsterdam. (b) Sharma C. V. K. and Desiraju, G. R. (1996) in Desiraju, G. R. (ed.), Perspectives in Supramolecular Chemistry, Vol. II. The Crystal as a Supramolecular Entity, Wiley, New York. (c) Aakeröy, C. B. (1997) Acta Crystallogr. B53, 569. (d) Subramanian, S. and Zawarotko, M. J. (1994) Coord. Chem. Rev. 137, 357.

    Google Scholar 

  3. A recent symposium has been devoted to this topic: “Hydrogen Bonding in Inorganic and Organometallic Chemistry,” ACS National Meeting, Boston, MA, August 1998 (L. Brammer and R. H. Crabtree, organizers). For pertinent reviews, see (a) Brammer, L., Zhao, D., Ladipo, F. T., and Braddock-Wilking, J. (1995) Acta Crystallogr. B51, 632. (b) Shubina, Ye. S., and Epstein, L. M. (1992) J. Mol. Struct. 265, 367. (c) Epstein, L. M. and Shubina, E. S. (1992) Metallorganich. Khim 5, 61 (English translation, idem (1992) Organomet. Chem. USSR 5, 1). (d) Canty, A. J. and van Koten, G. (1995) Acc. Chem. Res. 28, 406. (e) Crabtree, R. H., Siegbahn, P. E. M., Eisenstein, O., Rheingold, A. L., and Koetzle, T. F. (1996) Acc. Chem. Res. 29, 348. (f) Braga, D., and Grepioni, F. (1997) Acc. Chem. Res. 30, 81. (g) Burrows, A. D., Chan, C.-W., Chowdry, M. M., McGrady, J. E., and Mingos, D. M. P. (1995) Chem. Soc. Rev. 24, 329. (h) Raymo, F. M. and Stoddart, J. F. (1996) Chem. Ber. 129, 981.

    Google Scholar 

  4. Actams, M. A., Foiling, K., Huffman J. C, and Caulton, K. G. (1979) Inorg. Chem. 18, 3020. (b) Epstein, L. Shubina, E. S., Krylov, A. N., Kreindlin, A. Z., and Ribinskaya, M. I. (1993) J. Organomet. Chem. 447, 227. (c) Fairhurst, S. A., Henderson, R. A., Hughes, D. L., Ibrahim, S. K. and Pickett, C. J. (1995) J. Chem. Soc., Chem. Commun. 1569. (d) Peris, E. and Crabtree, R. H. (1995) J. Chem. Soc., Chem. Commun. 2179. (e) Braga, D. Grepioni, F., Tedesco, E., Biradha, K., and Desiraju, G. R. (1996) Organometallics 15, 2692.

    Article  Google Scholar 

  5. Chatt, J., Duncanson, L. A. and Venanzi, L. M. (1958) J. Chem. Soc. 3203; Duncanson L. A. and Venanzi, L. M. (1960) J. Chem. Soc. 3841. (b) Baker, A. W. and Bublitz, D. E. (1965) Spectrochim. Acta 22, 1787. (c) Roe, D. M., Bailey, P. M., Moseley, K., and Maitlis, P. M. (1972) J. Chem. Soc, Chem. Commun., 1273. (d) Drago, R. S., Nozari, M. S., Klinger, R. J., and Chamberlain, C. S. (1979) Inorg. Chem. 18, 1254.

    Google Scholar 

  6. Brammer, L., Charnock, J. M., Goggin, P. L., Goodfellow, R. J., Orpen, A. G., and Koetzle, T. F. (1991) J. Chem. Soc., Dalton Trans. 1789, and refs. therein. (b) Brammer, L., McCann, M. C, Bullock, R. M., McMullan, R. K., and Sherwood, P. (1992) Organometallics 11, 2339. (c) Brammer, L. and Zhao, D. (1994) Organometallics 13, 1545. (d) Zhao, D, Ladipo, F. T, Braddock-Wilking, J., Brammer, L., and Sherwood, P. Organometallics 15, 1441.

    Google Scholar 

  7. Calderazzo, F., Fachinetti, G., Marchetti, F., and Zanazzi, P. F. (1981) J. Chem. Soc, Chem. Commun., 181. (b) Cecconi, F., Ghilardi, C.A., Innocenti, P., Mealli, C, Midollini, S., and Orlandini, A. (1984) Inorg. Chem. 23, 922. (c) Wehman-Ooyevaar, I. C. M., Grove, D. M., Kooijman, H., van der Sluis, P., Spek, A. L., and van Koten, G. (1992) J. Am. Chem. Soc. 114, 9916. (d) Wehman-Ooyevaar, I. C. M., Grove, D. M., de Vaal, P., Dedieu, A., and van Koten, G. (1992) Inorg. Chem. 31, 5484. (e) Kazarian, S. G., Hamley, P. A., and Poliakoff, M. (1993) J. Am. Chem. Soc. 115, 9069. (f) Albinati, A., Lianza, F., Müller, B., and Pregosin, P. S. (1993) Inorg. Chim. Acta 208, 119. (g) Albinati, A., Lianza, F., Pregosin, P. S., and Müller, B. (1994) Inorg. Chem. 33,2522. (h) Shubina, Ye. S., and Epstein, L. M. (1992) J. Mol. Struct. 265, 367. (i) Shubina, E. S., Krylov, A. N., Kreindlin, A. Z., Rybinskaya, M. I., and Epstein, L. M. (1993) J. Mol. Struct. 301, 1. (j) Shubina, E. S., Krylov, A. N., Kreindlin, A. Z., Rybinskaya, M. I., and Epstein, L. M. (1994) J. Mol. Struct. 465, 259. (k) Braga, D., Grepioni, F., Tedesco, E., Biradha K., and Desiraju, G. R. (1997) Organometallics 16, 1846. (1) Gao, Y., Eisenstein O., and Crabtree, R. H. (1997) Inorg. Chim. Acta 254, 105.

    Google Scholar 

  8. Mareque Rivas, J. M. and Brammer, L. (1999) Coord. Chem. Rev. 183, in press.

    Google Scholar 

  9. Dunitz, J. D. and Bürgi, H.-B. (1983) Acc. Chem. Res. 16, 153.

    Article  Google Scholar 

  10. Mareque Rivas, J. M. and Brammer, L. (1998) Inorg. Chem. 37, 5512.

    Article  Google Scholar 

  11. Brammer, L. and Sherwood, P. (1999) in preparation.

    Google Scholar 

  12. Feil, D. (1991) in G. A. Jeffrey and J. F. Piniela (eds.), The Application of Charge Density Research To Chemistry and Drug Design, Plenum Press, New York, NATO ASI Series B: Physics 250, 103.

    Google Scholar 

  13. Yoshida, T., Tani, K., Yamagata, T., Tatsuno, Y. and Saito, T. (1990) J. Chem. Soc, Chem Commun., 292.

    Google Scholar 

  14. Allen, F. H. and Kennard, O. (1993) Chem. Design Automation News 8, 1 & 31.

    Google Scholar 

  15. Braga, D., Grepioni, F., Tedesco, E., Wadepohl, H., and Gebert, S. (1997) J. Chem. Soc, Dalton Trans., 1727.

    Google Scholar 

  16. For a study of organofluorine as a hydrogen bond acceptor, see Dunitz, J D. and Taylor, R. (1997) Chem. Eur. J. 3, 89. (b) Aullön, G., Bellamy, D., Brammer, L., Bruton, E. A., and Orpen, A. G. (1998) Chem Commun., 653.

    Google Scholar 

  17. Yap, G. P. A., Rheingold, A. L., Das, P., and Crabtree, R. H. (1995), Inorg. Chem. 34, 3474.

    Article  CAS  Google Scholar 

  18. Brammer, L. and Bruton, E. A., (1999) in preparation.

    Google Scholar 

  19. Mareque Rivas, J. M. and Brammer, L. (1998) Inorg. Chem. 37, 4756.

    Article  Google Scholar 

  20. For a review, see, Crabtree, R. H., Siegbahn, P. E. M., Eisenstein, O. Rheingold, A. L., and Koetzle, T. F. (1996) Acc. Chem. Res. 29, 348.

    Google Scholar 

  21. The situation is perhaps more extreme for H (cf. halogens) as, while hydridic M-H can be moderately strong acceptor (hydrogen bonds of ca. 5 kcal/mol), its carbon-bound counterpart, C-H, obviously has the reverse bond polarity of that needed to be a hydrogen bond acceptor.

    Google Scholar 

  22. Peris, E., Lee, J. C, Rambo, J. R., Eisenstein, O., and Crabtree, R. H. (1995) J. Am. Chem Soc. 117, 3485.

    Article  CAS  Google Scholar 

  23. For example, see Kubas G. J. (1988) Acc. Chem. Res. 21, 120.

    Article  Google Scholar 

  24. Lee, J. C, Rheingold, A. L., Müller, B., Pregosin, P. S., and Crabtree, R. H. (1994) J. Chem. Soc., Chem Commun., 1021.

    Google Scholar 

  25. Albinati, A., Bakhmutov, V. I., Caulton, K. G., Clot, E., Eckert, J. Eisenstein, O., Gusev, D. G., Grushin, V. V., Hauger, B. E., Klooster, W. T., Koetzle, T. F., McMullan, R. K., O’Loughlin,, T. J., Pélissier, M., Ricci, J. S., Sigalas, M. P., and Vymenits, A. B. (1993) J. Am. Chem. Soc. 115, 7300.

    Article  CAS  Google Scholar 

  26. Kuhlman, R. (1997) Coord. Chem. Rev. 167, 205.

    CAS  Google Scholar 

  27. Braga, D., Biradha, K., Grepioni, F., Pedireddi, V. R., and Desiraju, G. R. (1995) J. Am. Chem. Soc. 117, 3156.

    Article  CAS  Google Scholar 

  28. Mareque Rivas, J. M., Ph.D. Thesis, University of Missouri-St. Louis, 1999.

    Google Scholar 

  29. Nishio, M. and Hirota, M. (1989) Tetrahedron 45, 7201. (b) Nishio, M., Umezawa, Y., Hirota, M. and Takeuchi, Y. (1995) Tetrahedron 51, 8665. (c) McMullan, R. K., Kvick, Å. and Popelier, P. (1992) Acta Crystallogr. B48, 726. (d) Mootz, D. and Deeg, A. (1992) J. Am. Chem. Soc. 114, 5887. (e) Deeg, A. and Mootz, D. (1993) Z Naturforsch 48b, 571. (f) Steiner, T. Starikov, E. B., Amado, A. M. and Teixeira-Dias, J. J. C. (1995) J. Chem. Soc., Perkin Trans. 2,1323. (g) Weiss, H.-C. Bläser, D. Boese, R. Doughan, B. and Haley, M. M. (1997) Chem. Commun., 2403. (h) Weiss, H.-C. Boese, R. Smith, H. L. and Haley, M. M. (1997) Chem. Commun., 1703. (i) Allen, F. H., Howard, J. A. K., Hoy, V. J., Desiraju, G. R., Reddy, D. S., and Wilson, C. C. (1996) J. Am. Chem. Soc. 118, 4081.

    Article  CAS  Google Scholar 

  30. Lu, K.-L., Su, C.-J., Un, Y.-W., Gau, H.-M., and Wen, Y.-S. (1992) Organometallics 11, 3832.

    Article  CAS  Google Scholar 

  31. Zawarotko, M. J. (1994) Chem. Soc. Rev. 23, 283. (b) Keller, S. W. (1997) Angew. Chem., Int. Ed. Engt. 36, 247 and refs. therein.

    Article  Google Scholar 

  32. Stang, P.J. and Olenyuk (1997) Acc Chem. Res. 30, 502. (b) Stang, P. J. (1998) Chem. Eur. J. 4, 19. (c) Fujita, M. and Ogura, K. (1996) Coord. Chem. Rev. 148, 249.

    Article  CAS  Google Scholar 

  33. Mareque Rivas, J. M. and Brammer, L. (1998) New. J. Chem, 1315.

    Google Scholar 

  34. For an explanation of the graph set notation and its application to describing hydrogen bonding patterns, see, (a) Etter, M. C. (1990) Acc. Chem. Res. 23, 120; (b) Bernstein, J., Davis, R. E., Shimoni, L., and Chang, N.-L. (1995) Angew. Chem., Int. Ed. Engl. 34, 1555.

    Google Scholar 

  35. Aakeröy, C. B. and Beatty, A. M. (1998) Chem. Commun., 1067; (b) Aakeröy, C. B. Beatty A. M. and Helfrich, B. A. (1998) J. Chem Soc, Dalton Trans., 1943.

    Google Scholar 

  36. Copp, S. B., Subramanian, S, and Zawarotko, M. J. (1992) J. Am. Chem. Soc. 114, 8719. (b) Copp, S. B., Subramanian, S, and Zawarotko, M. J. (1993) J. Chem. Soc, Chem. Commun., 1078.

    Article  CAS  Google Scholar 

  37. Braga, D., Grepioni, F., Sabatino, P., and Desiraju, G. R. (1994) Organometallics 13, 3532. (b) Biradha, K., Desiraju, G. R., Braga, D., and Grepioni, F. (1996) Organometallics 15, 1284.

    Article  CAS  Google Scholar 

  38. Dance, I. (1996) in Desiraju, G. R. (ed.), Perspectives in Supramolecular Chemistry, Vol. II. The Crystal as a Supramolecular Entity, Chapter 5, Wiley, New York.

    Google Scholar 

  39. Braga, D., Costa, A. L., Grepioni, F., Scaccianoce, L., and Tagliavini, E. (1996) Organometallics 15, 1084. (b) Braga, D. Angeloni, A., Grepioni, F., and Tagliavini, E. (1997) Organometallics 16, 5478.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brammer, L. (1999). Direct and Indirect Roles of Metal Centres in Hydrogen Bonding. In: Howard, J.A.K., Allen, F.H., Shields, G.P. (eds) Implications of Molecular and Materials Structure for New Technologies. NATO Science Series, vol 360. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4653-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4653-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5817-6

  • Online ISBN: 978-94-011-4653-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics