Skip to main content

Model Reduction of Large-Scale Systems Rational Krylov Versus Balancing Techniques

  • Chapter
Error Control and Adaptivity in Scientific Computing

Part of the book series: NATO Science Series ((ASIC,volume 536))

Abstract

In this paper, we describe some recent developments in the use of projection methods to produce a reduced-order model for a linear time-invariant dynamical system which approximates its frequency response. We give an overview of the family of Rational Krylov methods and compare them with “near-optimal” approximation methods based on balancing transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.A. Aguirre (1993), Quantitative measure of modal dominance for continuous systems, In 32nd IEEE Conf. Dec. Contr., San Antonio, TX.

    Google Scholar 

  2. B.D.O. Anderson and A.C. Antoulas (1990), Rational interpolation and state variable realizations, Lin. Alg. & Appl. 137/138, pp. 479–509.

    Article  MathSciNet  Google Scholar 

  3. G. A. Baker Jr. (1975), Essentials of Padé Approximants, New York, Academic Press.

    MATH  Google Scholar 

  4. D.L. Boley (1994), Krylov space methods on state-space control models, Circ. Syst. & Signal Process. 13, pp. 733–758.

    MathSciNet  MATH  Google Scholar 

  5. D. Bonvin and D.A. Mellichamp (1982), A unified derivation and critical review of modal approaches to model reduction, Int. J. Contr. 35, pp. 829–848.

    Article  MATH  Google Scholar 

  6. C. Brezinski (1980), Padé-Type Approximation and General Orthogonal Polynomials, ISNM 50, Basel, Birkhäuser.

    MATH  Google Scholar 

  7. P. Feldman and R.W. Freund (1995), Efficient linear circuit analysis by Padé approximation via the Lanczos process, IEEE Trans. Computer-Aided Design 14, pp. 639–649.

    Article  Google Scholar 

  8. K. Gallivan, E. Grimme and P. Van Dooren (1994), Asymptotic waveform evaluation via a Lanczos method, Appl. Math. Lett. 7, pp. 75–80.

    Article  MATH  Google Scholar 

  9. K. Gallivan, E. Grimme and P. Van Dooren (1994), Padé Approximation of large-scale dynamic systems with Lanczos methods, Proc. 33rd IEEE Conf. Dec. Contr., Lake Buena Vista, FL.

    Google Scholar 

  10. K. Gallivan, E. Grimme and P. Van Dooren (1995), A rational Lanczos method for model reduction, Numer. Algorithms 12, pp. 33–63.

    Article  Google Scholar 

  11. K. Glover (1984), All optimal Hankel norm approximations of linear time multivariable systems and their L-error bounds, Int. J. Contr. 39, pp. 1115–1193.

    Article  MathSciNet  MATH  Google Scholar 

  12. W.B. Gragg and A. Lindquist (1983), On the partial realization problem, Linear Algebra & Appl. 50, pp. 277–319.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Grimme, D. Sorensen and P. Van Dooren (1995), Model reduction of state space systems via an implicitly restarted Lanczos method, Numer. Algorithms 12, pp. 1–31.

    Article  Google Scholar 

  14. E. Grimme (1997), Krylov Projection Methods for Model Reduction, PhD thesis, University of Illinois at Urbana-Champaign, IL.

    Google Scholar 

  15. E. Grimme, K. Gallivan and P. Van Dooren (1998), On Some Recent Developments in Projection-based Model Reduction, In ENUMATH 97, 2nd European Conference on Numerical Mathematics and Advanced Applications, H.G. Bock, F. Brezzi, R. Glowinski, G. Kanschat, Yu.A. Kuznetsov, J. Périaux, R. Rannacher (eds.), World Scientific Publishing, Singapore.

    Google Scholar 

  16. H.M. Kim and R.R. Craig Jr. (1998), Structural dynamics analysis using an unsymmetric block Lanczos algorithm, Int. J. Numer. Methods in Eng. 26, pp. 2305–2318.

    Article  Google Scholar 

  17. C.B. Moler and G.W. Stewart (1973), An algorithm for the generalized matrix eigenvalue problem, SIAM Num. Anal. 10, pp. 241–256.

    Article  MathSciNet  MATH  Google Scholar 

  18. B.C. Moore (1981), Principal component analysis in linear systems: controllability, observability and model reduction, IEEE Trans. Aut. Contr. 26, pp. 17–32.

    Article  MATH  Google Scholar 

  19. B. Nour-Omid and R.W. Clough (1984), Dynamic analysis of structures using Lanczos coordinates, Earthquake Eng. and Struc. Dyn. 12, pp. 565–577.

    Article  Google Scholar 

  20. T. Penzl (1998), A Cyclic Low Rank Smith Method for Large Sparse Lyapunov Equations with Applications in Model Reduction and Optimal Control, T.U. Chemnitz, Dept. Mathematics, Preprint SFB393/98-6.

    Google Scholar 

  21. A. Ruhe (1994), Rational Krylov algorithms for nonsymmetric eigenvalue problems II: matrix pairs, Lin. Alg. & Appl. 197, pp. 283–295.

    Article  MathSciNet  Google Scholar 

  22. Y. Shamash (1975), Model reduction using the Routh stability criterion and the Padé approximation technique, Int. J. Control 21, pp. 475–484.

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Shamash (1981), Viability of methods for computing stable reduced-order models, IEEE Trans. Aut. Contr. 26, pp. 1285–1286.

    Article  MATH  Google Scholar 

  24. T.-J. Su and R.R. Craig Jr. (1992), Krylov vector methods for model reduction and control of flexible structures, Advances in Control and Dynamic Systems 54, pp. 449–481.

    Article  Google Scholar 

  25. P. Van Dooren (1992), Numerical linear algebra techniques for large scale matrix problems in systems and control, Proc. 31st IEEE Conf. Dec. Contr., Tucson, AZ.

    Google Scholar 

  26. C.D. Villemagne and R.E. Skelton (1987), Model reduction using a projection formulation, Int. J. Control 46, pp. 2141–2169.

    Article  Google Scholar 

  27. P. Wortelboer (1994), Frequency-weighted Balanced Reduction of Closed-loop Mechanical Servo-systems: Theory and Tools, Ph.D. Thesis, T.U. Delft, The Netherlands.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gallivan, K.A., Grimme, E., Van Dooren, P.M. (1999). Model Reduction of Large-Scale Systems Rational Krylov Versus Balancing Techniques. In: Bulgak, H., Zenger, C. (eds) Error Control and Adaptivity in Scientific Computing. NATO Science Series, vol 536. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4647-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4647-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5809-1

  • Online ISBN: 978-94-011-4647-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics