Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 536))

  • 268 Accesses

Abstract

The so-called structure-preserving methods which reproduce the fundamental properties like symplecticness, time reversibility, volume and energy preservation of the original model of the underlying physical problem became very important in recent years. It has been shown theoretically and experimentally, that these methods are superior to the standard integrators, especially in long term computation. In the paper the adaptivity issues are discussed for symplectic and reversible methods designed for integration of Hamiltonian systems. Molecular dynamics models and N—body problems, as Hamiltonian systems, are challenging mathematical models in many aspects; the wide range of time scales, very large number of differential equations, chaotic nature of trajectories, restriction to very small step sizes in time, etc. Recent results on variable step size integrators, multiple time stepping methods, regularization techniques with applications to classical and quantum molecular dynamics, to N— body atomic problems and planetary motion will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U. R. Ascher and S. Reich. On some difficulties in integrating highly oscillatory Hamiltonian systems. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 281–296. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  2. E. Barth, B. Leimkuhler, and S. Reich. A time-reversible variable stepsize integrator for constrained dynamics. Technical Report, SC97-53, Konrad Zuse Zentrum, Berlin, 1997. to appear in SIAM J. Sci. Comput.

    Google Scholar 

  3. J.J. Biesiadecki and R.D. Skeel. Dangers of multiple-time-step methods. J. of Comp. Phys., 109:318–328, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. C. Bishop, R. D. Skeel, and K. Schulten. Difficulties with multiple time stepping and fast multipole algorithm in molecular dynamics. Journal of Computational Chemistry, 18:1785–1792, 1997.

    Article  Google Scholar 

  5. F. A. Bornemann and C. Schütte. On the singular limit of the Quantum-Classical molecular dynamics model. to appear in SIAM J. Appl. Math., 1998.

    Google Scholar 

  6. M. P. Calvo,, M. A. López-Marcos, and J. M. Sanz-Serna. Variable step implementation of geometric integrators. Appl. Numer. Math., 28:1–16, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.P. Calvo and J.M. Sanz-Serna. The development of variable-step symplectic integrators with application to the two-body problem. SIAM J. Sci. Comput., 14:936–952, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Cirilli, E. Hairer, and B. Leimkuhler. Asymptotic error analysis of the adaptive Verlet method. BIT, 39:25–33, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deuflhard, M. Dellnitz, O. Junge, and C. Schütte. Computation of essential molecular dynamics by subdivision techniques. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 98–115. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  10. M. Eichinger, H. Grubmüller, H. Heller, and P. Tavan. FAMUSAMM: An algorithm for rapid evaluation of electrostatic interactions in molecular dynamics. Journal of Computational Chemistry, 18:1729–1749, 1997.

    Article  Google Scholar 

  11. F. Figueirido, R.M. Levy, Zhou, and B. J. Berne. Large scale simulation of macro-molecukes in solution: Combining the periodic fast multipole method with multiple time step integrators. J. Chem. Phys., 106:9835–9849, 1997.

    Article  Google Scholar 

  12. Y. Funato, P. Hut, S. McMillan, and J. Makino. Time-symmetrization of Kustaanheimo-Siefel regularization. The Astrophysics Journal, 112:1697, 1996.

    Google Scholar 

  13. B. García-Archilla, J. M. Sanz-Serna, and R. D. Skeel. Long-time-steps methods for oscillatory differential equations. SIAM J. Sci. Comput, 20:930–963, 1998.

    Article  Google Scholar 

  14. B. Gladman, M. Duncan, and J. Candy. Symplectic integrators for long-term integration in celestial mechanics. Celest. Mech., 52:221–240, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Grubmüller, H. Heller, A. Windermuth, and K. Schulten. Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-Range Interactions. Mol. Sim., 6:121–142, 1991.

    Article  Google Scholar 

  16. E. Hairer. Backward analysis of numerical integrators and symplectic methods. In K. Burrage, C. Baker, P. v.d. Houwen, Z. Jackiewicz, and P. Sharp, editors, Scientific Computation and Differential Equations, volume 1 of Annals of Numer. Math., pages 107–132, Amsterdam, 1994. J.C. Baltzer. Proceedings of the SCADE’93 conference, Auckland, New-Zealand, January 1993.

    Google Scholar 

  17. E. Hairer. Variable time step integration with symplectic methods. Appl. Numer. Math., 25:219–227, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. Hairer, S.P N0rsett, and G. Wanner. Solving Ordinary Differential Equations I, Nonstiff Problems. Springer, 1993.

    Google Scholar 

  19. E. Hairer and D. Stoffer. Reversible long-term integration with variable step sizes. SIAM J. Sci. Compul., 18:257–269, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II, Stiff Problems and Differential-Algebraic equations. Springer, 1996. II. Edition.

    Google Scholar 

  21. M. Hankel, B. Karasözen, P. Rentrop, and U. Schmitt. A Molecular Dynamics Model for Symplectic Integrators. Mathematical Modelling of Systems, 3(4):282–296, 1997.

    Article  MATH  Google Scholar 

  22. D. J. Hardy and D. I Okunbor. Symplectic multiple time step integration. 1997.

    Google Scholar 

  23. D. J. Hardy, D. I. Okunbor, and R. D. Skeel. Symplectic Variable Stepsize Integration for TV-Body Problems. Appl. Numer. Math. 29:19–30, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Hochbruck and C. Lubich. A bunch of time integrators for quantum/classical molecular dynamics. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 421–432. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  25. T. Holder, B. Leimkuhler, and S. Reich. Explicit variable step-size and time-reversible integrators. Technical Report, SC98-17, Konrad Zuse Zentrum, Berlin, 1998.

    Google Scholar 

  26. W. Huang and B. Leimkuhler. The adaptive Verlet method. SIAM J. Sci. Comput., 18(1):239, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  27. P. Hut, J. Makino, and S. McMillan. Building a better leapfrog. The Astrophysical Journal, 443:L93–L96, 1995.

    Article  Google Scholar 

  28. J.A. Izaguirre, S. Reich, and R.D. Skeel. Longer time steps for molecular dynamics. 1998.

    Google Scholar 

  29. M. H. Lee, M. J. Duncan, and H. F. Levinson. Variable timestep integrators for long-term orbital integrations. Technical report, Department of Physics, Queen’s University, Canada, 1997. to appear in Computational Astrophysics, Proc. 12th Kingston Meeting, ed. D. A. Clarke, M. J. West.

    Google Scholar 

  30. B. Leimkuhler. Reversible adaptive regularization I: perturbed Kepler motion and classical atomic trajectories. to appear in Philosophical Trans. Royal Soc. A., 1997.

    Google Scholar 

  31. B. Leimkuhler, S. Reich, and R.D. Skeel. Integration methods for molecular dynamic. In J.P. Mesirov, K. Schulten, and D.W. Sumners, editors, Mathematical Approaches to Biomolecular Structure and Dynamics, pages 161–186. IMA Volumes in Mathematics and its Applications Vol. 82, Springer Verlag, 1996.

    Google Scholar 

  32. T. R. Litteil, R. D. Skeel, and M. Zhang. Error Analysis of Symplectic Multiple Time Stepping. SIAM J. Numer. Anal., 34(5), 1997.

    Google Scholar 

  33. M. Mandziuk and T. Schlick. Resonance in the dynamics of chemical systems simulated by the implicit midpoint scheme. Chemical Phyics Letters, 237:525–535, 1995.

    Article  Google Scholar 

  34. P. Nettesheim and S. Reich. Symplectic multiple-time-stepping integrators for quantum-classical molecular dynamics. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 412–420. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  35. P. Nettesheim and C. Schütte. Numerical integrators for quantum-classical molecular dynamics. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 396–411. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  36. T. Quinn, N. Katz, J. Stadel, and G. Lake. Time stepping n-body simulation. Technical report, Department of Physics and Astronomy, University of Massachusetts, 1997.

    Google Scholar 

  37. S. Reich. Smoothed Dynamics of Highly Oscillatory Hamiltonian Systems. Physica D, 89:28–42, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Reich. Backward error analysis for numerical integrators. Konrad-Zuse Zentrum für Informationstechnik Berlin, 1996, to appear in SIAM J. Numer. Anal., SC 96-21

    Google Scholar 

  39. S. Reich. Torsions Dynamics of Molecular Dynamics. Physical Review E, 53:4876–4881, 1996.

    Article  Google Scholar 

  40. S. Reich. Dynamical systems, numerical integration, and exponentially small estimators. Habilitationsschrift, Freie Universität Berlin, 1998.

    Google Scholar 

  41. S. Reich. A modified force field for constrained molecular dynamics. to appear in Numerical Algorithms, 1998.

    Google Scholar 

  42. S. Reich. Multiple times-scales in classical and quantum-classical molecular dynamics. to appear in J. Comput. Phys., Department of Mathematics and Statistics, University of Surrey, 1998.

    Google Scholar 

  43. P. Saha and Tremaine S. Long-term planetary integration with individual time steps. The Astronomy Journal, 108:1962–1969, 1994.

    Article  Google Scholar 

  44. J.M. Sanz-Serna and M.P. Calvo. Numerical Hamiltonian Problems. Chapman & Hall, 1994.

    Google Scholar 

  45. T. Schlick, E. Barth, and M. Mandziuk. Bringing the timescale gap between simulation and experimentation. In R. M. Stroud, editor, Annual Review of Biophyics and Biomolecular Structure, pages 179–220, 1997.

    Google Scholar 

  46. U. Schmitt and J. Brickmann. Discrete time-reversible propagation scheme for mixed quantum-classical dynamics. Chemical Physics, 208:45–56, 1996.

    Article  Google Scholar 

  47. C. Schütte and F. A. Bornemann. Approximation properies and limits of the Quantum-Classical molecular dynamics model. In P. Deuflhard et al., editor, Algorithms for Macromolecular Modelling: Challenges, Methods, Ideas, pages 380–395. Lecture Notes in Computational Science and Engineering, Springer, 1998.

    Google Scholar 

  48. R.D. Skeel and J. J. Biesiadecki. Symplectic Integration with Variable Stepsize. Annals of Numer. Math., 1:191–198, 1994.

    MathSciNet  MATH  Google Scholar 

  49. D. Stoffer. Variable Steps for Reversible Integration Methods. Computing, 55:1–22, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  50. A. Stuart and A.R. Humpries. Dynamical Systems and Numerical Analysis. Cambridge University Press, 1996.

    Google Scholar 

  51. S.J. Stuart, R. Zhou, and B. J. Berne. Molecular dynamics with multiple time scales: The selection of efficient reference system propagators. J. Chem. Phys., 105:1426–1436, 1996.

    Article  Google Scholar 

  52. M. Tuckerman, B. J. Berne, and G. J. Martyna. Reversible Multiple Time Scale Molecular Dynamics. J. Chem. Phys., 97(3):1990–2001, 1992.

    Article  Google Scholar 

  53. J. Wisdom and M. Holman. Symplectic maps for the N-body problem. Astron. J., 102:1528–1538, 1991.

    Article  Google Scholar 

  54. H. Yoshida. Construction of higher order symplectic integrators. Physics Letters A, 150:262–268, 1990.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Karasözen, B. (1999). Adaptive Symplectic and Reversible Integrators. In: Bulgak, H., Zenger, C. (eds) Error Control and Adaptivity in Scientific Computing. NATO Science Series, vol 536. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4647-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4647-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5809-1

  • Online ISBN: 978-94-011-4647-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics