Skip to main content

Part of the book series: NATO Science Series ((ASDT,volume 25))

  • 189 Accesses

Abstract

Inhibition of tissue acetylcholinesterase (AChE) is generally thought to be the principal biochemical lesion in organophosphate (OP) poisoning. Depending on the structure of the OPs, various phosphorylated AChEs are formed that differ in the rates for spontaneous and oxime-induced reactivation and for irreversible inhibition by “aging”.

The rationale for the use of oximes in the treatment of OP poisoning thus is the potential reactivatability of tissue AChE. Since this enzyme source is not easily accessible, erythrocyte AChE (eryAChE) is used as a suitable surrogate marker. In fact, monitoring of eryAChE allows the answer to the following questions: (1) Is the patient’s enzyme reactivatable at all by the therapeutic oxime in vitro? (2) Did the oxime therapy result in reactivation in vivo? Oxime therapy can be terminated when anticholinesterases are no longer present in the body. This item can be checked by the following endpoints: (1) The patient’s plasma does not inhibit an external enzyme source, e.g. donor eryAChE. (2) The usually depressed plasma Cholinesterase (PlChE) is steadily increasing due to de novo synthesis.

We used this test battery to monitor the course of organophosphate poisoning and the influence of obidoxime therapy. Before transfer to the intensive care unit (ICU), all patients (4 cases) received primary care by an emergency physician. In the ICU, atropine sulphate was continuously administered i.v. upon demand according to the endpoints: no bronchorrhoea, dry mucous membranes, no axillary sweating. Obidoxime (Toxogonin) was given as an i.v. bolus (250 mg) followed by continuous infusion at 750 mg/24 h. Obidoxime was effective in life-threatening parathion poisoning (n = 2), particularly impressive when the dose absorbed was comparably low. In mega-dose poisoning net reactivation was not achieved until several days after ingestion when the concentration of active poison in plasma had declined. The reactivatability in vivo was longer lasting than expected from in vitro experiments. Therapy with obidoxime allowed a marked reduction of the atropine demand (usually 0.5 to 1 mg/h).

Obidoxime was quite ineffective in oxydemeton-methyl poisoning when the time elapsing between ingestion and oxime therapy was longer than one day. When obidoxime was administered shortly after ingestion (1 h), the reactivation was nearly complete.

A more detailed report was published in Hum. Exp. Toxicol. August, 1997 Supported by the NATO-Linkage Grant No 9760581

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson M.K., Vale J.A. (1992) Clinical management of acute organophosphate poisoning: an overview. In: Clinical and Experimental Toxicology of Organophosphates and Carbamates, Ballantyne B and Marrs T (eds.) Butterworth-Heinemann Ltd, Oxford, pp. 528–535.

    Google Scholar 

  2. Willems J.L., Belpaire F.M. (1992) Anticholinesterase poisoning: an overview of pharmacotherapy. In: Clinical and Experimental Toxicology of Organophosphates and Carbamates, Ballantyne B and Marrs T (eds.) Butterworth-Heinemann Ltd, Oxford, pp. 536–542.

    Google Scholar 

  3. Willems J.L., De Bisschop H.C., Verstraete A.G., Declerck C., Christiaens Y., Vanscheeuwyck P., Buylaert W.A., Vogelaers D. & Colardyn F.(1993) Cholinesterase reactivation in organophosphorus poisoned patients depends on the plasma concentrations of the oxime pralidoxime methylsulphate and of the organophosphate. Arch Toxicol; 67: 79–84.

    Article  PubMed  CAS  Google Scholar 

  4. Willems J.L. (1996) Pralidoxime methylsulfate in the treatment of organophosphorus poisoning. In: Role of Oximes in the Treatment of Anticholinesterase Agent Poisoning, Szinicz L, Eyer P and Klimmek R (eds.) Spektrum Akademischer Verlag, Heidelberg,: pp. 69–73.

    Google Scholar 

  5. Eyer P. (1996) Optimal oxime dosage regimen, a pharmacokinetic approach. In: Role of Oximes in the Treatment of Anticholinesterase Agent Poisoning, Szinicz L, Eyer P and Klimmek R (eds.) Spektrum Akademischer Verlag, Heidelberg, pp. 33–51.

    Google Scholar 

  6. Worek F., Backer M., Thiemann H., Szinicz L., Mast U., Klimmek R., Eyer P. (1997) Reappraisal of indications and limitations of oxime therapy in organophosphate poisoning. Hum Exp Toxicol; 16:466–472

    Article  PubMed  CAS  Google Scholar 

  7. Schneider W. & Setter J. Blutzubereitungen. In: Hager’s Handbuch der pharmazeutischen Praxis, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  8. Ellman G.L., Courtney K.D., Andres V. & Featherstone R.M. (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol; 7: 88–95.

    Article  PubMed  CAS  Google Scholar 

  9. Augustinsson K.-B., Erikson H., Faijersson Y. (1978) A new approach to determining Cholinesterase activities in samples of whole blood. Clin Chim Acta; 89: 239–252.

    Article  PubMed  CAS  Google Scholar 

  10. Eyer P., Ascherl M. (1987) Reactions of para-substituted nitrosobenzenes with human hemoglobin. Biol Chem Hoppe-Seyler; 368: 285–294.

    Article  PubMed  CAS  Google Scholar 

  11. Spohrer U., Thiermann H., Klimmek R., Eyer P. (1994) Pharmacokinetics of the oximes HI-6 and HLo 7 in dogs after i.m. injection with newly developed dry/wet autoinjectors. Arch Toxicol; 68: 480–489.

    Article  PubMed  CAS  Google Scholar 

  12. Spohrer U., Eyer P.(1995) Separation of geometrical syn/anti isomers of obidoxime by ion-pair high-performance liquid chromatography. Chromatogr A; 693: 55–61.

    Article  Google Scholar 

  13. Thiermann H., Radtke M., Spohrer U., Klimmek R., Eyer P.(1996) Pharmacokinetics of atropine in dogs after i.m. injection with newly developed dry/wet autoinjectors containing HI-6 or HLo 7. Arch Toxicol; 70: 293–299.

    Article  PubMed  CAS  Google Scholar 

  14. Vale J.A. (1996) Rationale for oxime therapy: pralidoxime as an antidote in OP insecticide poisoning. Hum Exp Toxicol; 15: 77.

    Google Scholar 

  15. Skrinjaric-Spoljar M., Simeon V., Reiner E. (1973) Spontaneous reactivation and aging of dimethylphosphorylated acetylcholinesterase and Cholinesterase. Biochim Biophys Acta; 315: 363–369.

    Article  CAS  Google Scholar 

  16. Vale J.A. (1995) Oximes — useless and harmful? Przeglad Lekarski; 52: 201.

    Google Scholar 

  17. Erdmann W.D. (1968) Antidotbehandlung bei Alkylphosphatvergiftungen. Arch Toxicol; 24: 30–40.

    Article  CAS  Google Scholar 

  18. Boelcke G., Creutzfeldt W., Erdmann W.D., Gaaz J.W., Jacob G. (1970) Untersuchungen zur Frage der Lebertoxizitat von Obidoxim (Toxogonin“) am Menschen. Dtsch med Wschr; 95: 1175–1178.

    Article  PubMed  CAS  Google Scholar 

  19. Finkelstein Y., Kushnir A., Raikhlin-Eisenkraft B., (1989) Taitelman U. Antidotal therapy of severe acute organophosphate poisoning: a multihospital study. Neurotoxicol Teratol; 11: 593–596.

    Article  PubMed  CAS  Google Scholar 

  20. Waser P.G., Streichenberg C. (1987) Metabolism, kinetics, and interaction of [14C]sarin and [14C]obidoxime. J Toxicol Environ Chem; 18: 1–10.

    Article  Google Scholar 

  21. Spohrer U. (1994) HPLC-analytische Untersuchungen zur Pharmakokinetik von Pyridiniumaldoximen. Thesis, Munchen.

    Google Scholar 

  22. Sidell F.R., Groff W.A., Kaminskis A. (1972) Toxogonin and pralidoxime: Kinetic comparison after intravenous administration to man. J Pharm Sci; 61: 1765–1769.

    Article  PubMed  CAS  Google Scholar 

  23. Erdmann W.D., Okonek S. (1969) Uber die gastroenterale Resorption des Esterasereaktivators Obidoxim und die Moglichkeiten einer Resorptionsforderung. Arch Toxicol; 24: 91–101.

    Article  CAS  Google Scholar 

  24. Sidell F.R., Groff W.A. (1971) Toxogonin: Oral administration to man. J Pharm Sci; 60: 860–863.

    Article  PubMed  CAS  Google Scholar 

  25. Simon G.A., Tirosh M.S., Edery H. (1976) Administration of obidoxime tablets to man. Plasma levels and side reactions. Arch Toxicol; 36: 83–88.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Szinicz, L., Thiermann, H., Eyer, P., Zilker, T. (1999). Cholinesterase Status in Organophosphate Poisoned Patients. In: Sohns, T., et al. NBC Risks Current Capabilities and Future Perspectives for Protection. NATO Science Series, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4641-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4641-8_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5803-9

  • Online ISBN: 978-94-011-4641-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics