Skip to main content

Single-Chain 434 Repressors with Altered DNA-Binding Specificities

Isolation of mutant single-chain repressors by phenotypic screening of combinatorial mutant libraries

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 299 Accesses

Abstract

Combinatorial mutant libraries of the single-chain 434 repressor were used to discover novel DNA-binding specificities. Members of the library contain one wild type domain and one mutant domain which are connected by a recombinant peptide linker. The mutant domain contains randomized amino acids in place of the DNA-contacting residues. The single-chain derivatives are expected to recognize artificial operators containing the DNA sequence of ACAA - 6 base-pairs - NNNN, where ACAA is bound by the wild-type and NNNN by the mutant domain. An in vivo library screening method was used to isolate mutant DNA-binding domains which recognize the TTAA site of an asymmetric operator. Several mutants showed high affinity binding to the selection target and also strong (up to 80 fold) preference for TTAA over the wild type TTGT sequence. Some of the isolated mutants bound with very high affinities (10 to 50 pM) to operators containing the TTAC sequence, a close homologue of the TTAA selection target

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Greisman, H.A. and Pabo, C.O. (1997) A general strategy for selecting high-affinity zinc finger proteins for diverse DNA sites, Science, 275, 657–661.

    Article  PubMed  CAS  Google Scholar 

  2. Kim, J.-S. and Pabo, C.O. (1998) Getting a handhold on DNA: Design of poly-zinc finger proteins with femtomolar dissociation constants, Proc. Natl. Acad. Sci. USA, 95, 2812–2817.

    Article  PubMed  CAS  Google Scholar 

  3. Liu, Q., Segal, D.J., Ghiara, J.B. and Barbas, C.F., III. (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes, Proc. Natl.Acad. Sci. USA, 94, 5525–5530.

    Article  PubMed  CAS  Google Scholar 

  4. Choo, Y., Castellanos, A., Garcia-Hernandez, B., Sanchez-Garcia, I. and Klug, A. (1997) Promoter-specific activation of gene expression directed by bacteriophageselected zinc fingers, J. Mol. Biol 273, 525–532.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, J.-S. and Pabo, C.O. (1997) Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy, J. Biol. Chem 272, 29795–29800.

    Article  PubMed  CAS  Google Scholar 

  6. Berg, J.M. (1997) Letting your fingers do the walking, Nature Biotech 15, 323.

    Article  CAS  Google Scholar 

  7. Choo, Y. and Klug, A. (1995) Designing DNA-binding proteins on the surface of filamentous phage, Curr. Opin. Biotechnol 6, 431–436.

    Article  PubMed  CAS  Google Scholar 

  8. Rebar, E.J., Greisman, H.A. and Pabo, C.O. (1996) Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities, Methods Enzymol 267, 129–149.

    Article  PubMed  CAS  Google Scholar 

  9. Berg, J.M. and Shi, Y. (1996) Galvanization of biology: a growing appreciation for the roles of zinc, Science, 271, 1081–1085.

    Article  PubMed  CAS  Google Scholar 

  10. Rhodes, D., Schwabe, J W.R., Chapman, L. and Fairall, L. (1996) Towards understanding of protein-DNA recognition, Phil. Trans. R. Soc. Lond. B 351, 501

    Article  CAS  Google Scholar 

  11. Harrison, S.C. and Aggarwal, A.K. (1990) DNA recognition by proteins with the helixturn-helix motif, Annu. Rev. Biochem 59, 933–969.

    Article  PubMed  CAS  Google Scholar 

  12. Simoncsits, A., Chen, J., Percipalle P. Wang, S. Törö, I. and Pongor, S. (1997) Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators, J. Mol. Biol 267, 118–131.

    Article  PubMed  CAS  Google Scholar 

  13. Percipalle, P., Simoncsits, A., Zakhariev, S., Guarnaccia, C., Sanchez, R. and Pongor, S. (1995) Rationally designed helix-turn-helix proteins and their conformational changes upon DNA binding, EMBO J 14, 3200–3205.

    PubMed  CAS  Google Scholar 

  14. Chen, J., Pongor, S. and Simoncsits, A. (1997) Recognition of DNA by single-chain derivatives of the phage 434 repressor: high affinity binding depends on both the contacted and non-contacted base pairs, Nucleic Acids Res 25, 2047–2054.

    Article  PubMed  CAS  Google Scholar 

  15. Wharton, R.P. and Ptashne, M. (1985) Changing the binding specificity of a repressor by redesigning an a-helix, Nature, 316, 601–605.

    Article  PubMed  CAS  Google Scholar 

  16. Wharton, R. P. and Ptashne, M. (1987) A new specificity mutant of 434 repressor that defines an amino acid-base pair contact, Nature, 326, 888–891.

    Article  PubMed  CAS  Google Scholar 

  17. Huang, L., Sera, T. and Schultz, P.G. (1994) A permutational approach toward protein-DNA recognition, Proc. Natl. Acad Sci. USA, 91, 3969–3973.

    Article  PubMed  CAS  Google Scholar 

  18. Aggarwal, A.K., Rodger, D.W., Drottar, M., Ptashne, M. and Harrison, S.C. (1988) Recognition of DNA operator by the repressor of phage 434: a view at high resolution, Science, 242, 899–907.

    Article  PubMed  CAS  Google Scholar 

  19. Choo, Y. and Klug, A. (1994) Toward a code for interaction of zinc fingers with DNA: selection of randomized fingers displayed on phage, Proc. Natl. Acad. Sci. USA, 91 11163–11167.

    Article  PubMed  CAS  Google Scholar 

  20. Choo, Y. and Klug, A. (1994) Selection of DNA binding sites for zinc fingers using rationally randomized DNA reveals coded interactions, Proc. Natl. Acad. Sci. USA, 91,11168–11172.

    Article  PubMed  CAS  Google Scholar 

  21. Seeman, N.C., Rosenberg, M.J. and Rich, A. (1976) Sequence-specific recognition of double helical nucleic acids by proteins, Proc. Natl. Acad. Sci. USA,73 804–808.

    Article  PubMed  CAS  Google Scholar 

  22. Pabo, C.O. and Sauer., R.T. (1992) Transcription factors: structural families and principles of DNA recognition, Annu. Rev. Biochem 61 1053–1095.

    Article  PubMed  CAS  Google Scholar 

  23. Suzuki, M. (1994) A framework for the DNA-protein recognition code of the probe helix in transcription factors: the chemical and stereochemical rules, Structure, 2 317–326.

    Article  PubMed  CAS  Google Scholar 

  24. Mandel-Gutfreund, Y., Schueler, O. and Margalit, H. (1995) Comprehensive analysis of hydrogen bonds in regulatory protein DNA-complexes: in search of common principles, J. Mol. Biol 253 370–382.

    Article  PubMed  CAS  Google Scholar 

  25. Shimon, L.J. and Harrison, S.C. (1993) The phage 434 OR2/R1–69 complex at 2.5 A resolution, T. Mol. Biol 232 826–838.

    Article  CAS  Google Scholar 

  26. Rodgers, D.W. and Harrison, S.C. (1993) The complex between phage 434 repressor DNA-binding domain and operator site OR3: structural differences between consensus and non-consensus half-sites, Structure 1 227–240.

    Article  PubMed  CAS  Google Scholar 

  27. Miller, J.H. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  28. Gill, S.C. and von Hippel, P.H. (1989) Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem 182 319–326.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Simoncsits, A., Tjörnhammar, ML., Wang, S., Pongor, S. (1999). Single-Chain 434 Repressors with Altered DNA-Binding Specificities. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics