Skip to main content

Modelling DNA Stretching for Physics and Biology

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

  • 296 Accesses

Abstract

We have used internal coordinate molecular mechanics calculations to study how the DNA double helix deforms upon stretching. Results obtained for polymeric DNA under helical symmetry constraints suggest that two distinct forms, a unwound ribbon and a narrow fibre, can be formed as a function of which ends of the duplex are pulled. Similar results are also obtained with DNA oligomers. These experiments lead to force curves which exhibit a plateau as the conformational transition occurs. This is behaviour is confirmed by applying an increasing force to DNA and observing a sudden length increase at a critical force value. It is finally shown some DNA binding proteins can also stretch DNA locally, leading to conformations related to those created by nanomanipulation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bensimon, D. (1996) Force: a new structural control parameter? Curr. Biol 4 885–889.

    CAS  Google Scholar 

  2. Austin, R.H., Brody, J.P., Cox, E.C., Duke, T. and Volkmuth, T. (1997) Stretch genes, Physics Today 50 32–38.

    Article  CAS  Google Scholar 

  3. Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.L., Chatenay, D. and Caron, F. (1996) DNA: An extensible molecule, Science 271 792–794.

    Article  PubMed  CAS  Google Scholar 

  4. Smith, S.B., Cui, Y. and Bustamante, C. (1996) Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules, Science 271795–799.

    Article  PubMed  CAS  Google Scholar 

  5. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. and Croquette, V. (1996) The elasticity of a single supercoiled DNA molecule, Science 271 1835–1837.

    Article  PubMed  CAS  Google Scholar 

  6. Strick, T.R., Allemand, J.F., Bensimon, D. and Croquette, V. (1998) Behaviour of supercoiled DNA, Biophys. J 74 2016–2028.

    Article  PubMed  CAS  Google Scholar 

  7. Allemand, J.F., Bensimon, D., Lavery, R. and Croquette, V. (1998) Stretched and overtwound DNA forms a Pauling-like structure with exposed bases, Proc. Natl. Acad. Sci (USA) in press.

    Google Scholar 

  8. Essevaz-Roulet, B., Bockelmann, U. and Heslot, F. (1997) Mechanical separation of the complementary strands of DNA, Proc. Natl. Acad Sci. (USA) 94 1 1935–11940.

    Google Scholar 

  9. Bockelmann, U., Essevaz-Roulet, B. and Heslot, F. (1997) Molecular stick-slip revealed by opening DNA with piconewton force, Phys. Rev. Lett 79 4489–4492.

    Article  CAS  Google Scholar 

  10. Tskhovrebova, L., Trinick, J., Sleep, J.A. and Simmons, R.M. (1997) Elasticity and unfolding of single molecules of the giant muscle protein titin, Nature 387 308–312.

    Article  PubMed  CAS  Google Scholar 

  11. Rief, M., Gautel, M., Osterhelt, F., Fernandez, J.O. and Gaub, H.E. (1997) Reversible unfoldng of individual titin immunoglobulin domains by AFM, Science 276 1109–1112.

    Article  PubMed  CAS  Google Scholar 

  12. Kellermayer, M.S.Z., Smith, S.B., Granzier, H.L. and Bustamante, C. (1997) Folding-unfolding transitions in single titin molecules characterized with laser tweezers, Science 276, 1112–1116.

    Article  PubMed  CAS  Google Scholar 

  13. Florin, E.-L., Moy, V.T., and Gaub, H.E. (1994) Adhesion forces between individual ligand-receptor pairs, Science 264 415–417.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, G.U., Kidwell, D.A. and Colton, R.C. (1994) Sensing discrete strepavidin-biotin interactions, Langmuir 10, 354–357.

    Article  CAS  Google Scholar 

  15. Yin, H., Wang, M.D., Svoboda, K., Landick, R., Block, S.M. and Gelles, J. (1995) Transcription against an applied force, Science 270 1653–1657.

    Article  PubMed  CAS  Google Scholar 

  16. Rief, M., Oesterhelt, F., Heymann, B. and Gaub, H.E. (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy, Science 275 1295–1297.

    Article  PubMed  CAS  Google Scholar 

  17. Evans, E. and Ritchie, K. (1997) Dynamic strength of molecular adhesion bonds, Biophys. J 72 1541–1555.

    Article  PubMed  CAS  Google Scholar 

  18. Lee, G.U., Chrisey, L.A. and Colton, R.A. (1994) Direct measurements of the forces between complementary strands of DNA, Science 266 771–776.

    Article  PubMed  CAS  Google Scholar 

  19. Noy, A., Vezenov, D.V., Kayyem, J.F., Meade, T.J. and Lieber, C.M. (1997) Stretching and breaking duplex DNA by chemical force microscopy, Chem. Biol 4 519–527.

    Article  PubMed  CAS  Google Scholar 

  20. Lebrun, A. and Lavery, R. (1996) Modelling extreme stretching of DNA, Nucleic Acids Res 24 2260–2270.

    Article  PubMed  CAS  Google Scholar 

  21. Lebrun, A. and Lavery, R. (1998) Modeling the mechanics of a DNA oligomer, J. Biomol. Struct. Dyn in press.

    Google Scholar 

  22. Lavery, R., Zakrzewska, K. and Sklenar, H. (1995) JUMNA: Junction Minimization of Nucleic Acids, Comp. Phys. Commun 91 135–158.

    Article  CAS  Google Scholar 

  23. Lavery, R. (1988) Junctions and bends in nucleic acids: A new theoretical approach, in Structure and Expression Vol. 3 DNA bending and curvature, eds. Olson, W.K., Sarma, M.H., Sarma, R.H. and Sundaralingam, M. Adenine Press 191–211.

    Google Scholar 

  24. Werner, M.H., Gronenborn, A.M. and Clore, G.M. (1996) Intercalation, DNA kinking and the control of transcription, Science 271 778–784.

    Article  PubMed  CAS  Google Scholar 

  25. Lavery, R., Parker, I. and Kendrick, J. (1986) A general approach to the optimization of the conformation of ring molecules with an application to valinomycin, J. Biomol. Struct. Dyn 4 443–462.

    Article  PubMed  CAS  Google Scholar 

  26. Hingerty, B., Richie, R.H., Ferrel, T.L. and Turner, J.E. (1985) Dielectric effects in biopolymers; The theory of ionic saturation revisited, Biopolymers 24 427–439.

    Article  CAS  Google Scholar 

  27. Ahora, N. and Jayaram, B. (1997) Strength of hydrogen bonds in a helices, J. Comp. Chem 18 1245–1252.

    Article  Google Scholar 

  28. Flatters, D., Zakrzewska, K. and Lavery, R. (1997) Internal coordinate modeling of DNA: Force field comparisons, J. Comp. Chem 18 1043–1055.

    Article  CAS  Google Scholar 

  29. Weiner, S.J., Kollman, P.A., Nguyen, D.T. and Case, D.T. (1986) An all atom force field for simulation of proteins and nucleic acids, J. Comp. Chem, 7 230–252.

    Article  CAS  Google Scholar 

  30. Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995) A second generation force field for the simulation of proteine, nucleic acids and organic molecules, J. Am. Chem. Soc, 117 5179–5197.

    Article  CAS  Google Scholar 

  31. Sanghani, S.R., Zakrzewska, K., Harvey, S.C. and Lavery, R. (1996) Molecular modelling of (A4T4NN) and (T4A4NN): Sequence elements responsible for curvature, Nucleic Acids Res 24 1632–1637.

    Article  PubMed  CAS  Google Scholar 

  32. Lavery, R. and Sklenar, H. (1989) Defining the structure of irregular nucleic acids: Conventions and principles, J. Biomol. Struct. Dyn 6 655–667.

    Article  PubMed  CAS  Google Scholar 

  33. Bensimon, A., Simon, A., Chiffaudel, A., Croquette, V., Heslot, F. and Bensimon, D. (1994) Alignment and sensitive detection of DNA by a receding meniscus, Science 265 2096–2098.

    Article  PubMed  CAS  Google Scholar 

  34. Allemand, J.F., Bensimon, D., Jullien, L., Bensimon, A. and Croquette, V. (1997) pH-dependent specific binding and combing of DNA, Biophys J 73 2064–2070..

    Article  PubMed  CAS  Google Scholar 

  35. Gilson, M.K., Sharp, K.A. and Honig, B. (1987) Calculating the electrostatic potential of molecules in solution: method and error assessment, J. Comp. Chem 9, 327–335.

    Article  Google Scholar 

  36. Kim, Y., Gieger, J.H., Hahn, S. and Sigler, P.B. (1993) Crystal structure of a yeast TBP/TATA-box complex, Nature 365 512–520.

    Article  PubMed  CAS  Google Scholar 

  37. Kim, J.L., Nikolov, D.B. and Burley, S.K. (1993) Co-crystal structure of TBP recognizing the minor groove of a TATA element, Nature 365 520–527.

    Article  PubMed  CAS  Google Scholar 

  38. Juo, Z.S., Chiu, T.K., Leiberman, P.M., Baikalov, I., Berk A.J. and Dickerson R.E. (1996) How proteins recognize the TATA-box, J. Mol. Biol 261 239–254.

    Article  PubMed  CAS  Google Scholar 

  39. Schumacher, M.A., Choi, K.Y., Zalkin, H. and Brennan, R.G. (1994) Crystal structure of Lacl member, PurR, bound to DNA: Minor groove binding by a helices, Science 266 763–770.

    Article  PubMed  CAS  Google Scholar 

  40. Love, J.J., Li, X., Case, D.A., Giese, K., Grosschedi, R. and Wright, P.E. (1995) Structural basis for DNA bending by the architectural transcription factor LEF-1, Nature 376 791–795.

    Article  PubMed  CAS  Google Scholar 

  41. Werner, M.H., Huth, J.R., Gronenborn, A.M. and Clore, G.M. (1995) Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex, Cell 81 705–714.

    Article  PubMed  CAS  Google Scholar 

  42. Guzikevich-Guerstein, G. and Shakked, Z. (1996) A novel form of the DNA double helix imposed on the TATA-box by the TATA-box binding protein, Nature Struct. Biol 3 32–37.

    Article  PubMed  CAS  Google Scholar 

  43. Lebrun, A., Shakked, Z. and Lavery, R. (1997) Local DNA stretching mimics the distortion caused by the TATA-box binding protein, Proc. Natl. Acad. Sci. (USA) 94 2993–2998.

    Article  CAS  Google Scholar 

  44. A. Lebrun and R. Lavery (1998) Modeling DNA deformations induced by minor groove binding proteins, Biopolymers in press.

    Google Scholar 

  45. Flatters, D., Young, M.A., Beveridge D.L. and Lavery, R. (1997) Conformational properties of the TATA-box binding sequence of DNA, J. Biocool. Struct. Dyn 14 757–794.

    Article  CAS  Google Scholar 

  46. Pastor N., Pardo L. and Weinstein H. (1997) Does TATA matter? A structural exploration of the selectivity determinants in its complexes with TATA box-binding protein, Biophys.J 73 640–652.

    Article  PubMed  CAS  Google Scholar 

  47. de Souza O.N. and Ornstein R.L. (1997) Inherent DNA duplex curvature determined from 1.5 ns molecular dynamics simulations for a series of TATA-promoter mutants and comparison with experimental physical and biological observations, J. Biocool. Struct. Dyn 14,776.

    Google Scholar 

  48. Flatters, D. and Lavery, R. (1998) Sequence dependent dynamics of TATA-box binding sites, Biophys J. 75 372–381.

    Article  PubMed  CAS  Google Scholar 

  49. Pastor N., Pardo L. and Weinstein H. (1998) How the TATA box selects its protein partner in Molecular Modeling of Nucleic Acids eds. Leotis N.B. and SantaLucia J. (1998) ACS Symposum series 682 pp329–345.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lavery, R., Lebrun, A. (1999). Modelling DNA Stretching for Physics and Biology. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics