Skip to main content

Left-Handed Z-DNA: Structure and Function

  • Chapter

Part of the book series: NATO Science Series ((ASHT,volume 71))

Abstract

Z-DNA is a high energy conformer of B-DNA that forms in vivo during transcription as a result of torsional strain generated by a moving polymerase. An understanding of the biological role of Z-DNA has advanced with the discovery that the RNA editing enzyme double-stranded RNA adenosine deaminase type I (ADAR1) has motifs specific for the Z-DNA conformation. Editing by ADARI requires a double-stranded RNA substrate. In the cases known, the substrate is formed by folding an intron back onto the exon that is targeted for modification. The use of introns to direc.,processing of exons requires that editing occur before splicing. Recognition of Z-DNA by ADARI may allow editing of nascent transcripts to be initiated immediately after transcription, ensuring that editing and splicing are performed in the correct sequence. Structural characterization of the Z-DNA binding domain indicates that it belongs to the winged helix-turn-helix class of proteins and is similar to the globular domain of histone-I-15

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rich, A., DNA comes in many forms Gene, 1993. 135: p. 99–109.

    Article  PubMed  CAS  Google Scholar 

  2. Wang, A.H.-J., G.J. Quigley, F.J. Kolpak, J.I. Crawford, J.H. van Boom, G. van der Marel, and A. Rich, Molecular structure of a left-handed double helical DNA fragment at atomic resolution Nature, 1979. 282: p. 680–686.

    Article  PubMed  CAS  Google Scholar 

  3. Klysik, J., S.M. Stirdivant, J.E. Larson, P.A. Hart, and R.D. Wells, Left-handed DNA in restriction fragments and a recombinant plasmid Nature, 1981. 290: p 672–677.

    Article  PubMed  CAS  Google Scholar 

  4. Haniford, D.B. and D.E. Pulleybank, Facile transition of poly[d(TG).d(CA)] into a left-handed helix in physiological conditions Nature, 1983.302: p. 632–634.

    Article  PubMed  CAS  Google Scholar 

  5. Peck, L.J., A. Nordheim, A. Rich, and J.C. Wang, Flipping of cloned d(pCpG) n .d(pCpG) n DNA sequences from right-to left-handed helical structure by salt, Co(III), or negative supercoiling Proc. Natl. Acad. Sci. USA, 1982. 79: p. 4560–4564.

    Article  PubMed  CAS  Google Scholar 

  6. Pohl, F.M. and T.M. Jovin, Salt induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly(dG-dC) J. Mol. Biol., 1972. 67: p. 375–396.

    Article  PubMed  CAS  Google Scholar 

  7. Thamann, T.J., R.C. Lord, A.H.-J. Wang, and A. Rich, The high salt form of poly(dGdC).ploy(dG-dC) is left-handed Z-DNA: Raman spectra of crystals and solutions Nucleic Acids Res., 1981. 9: p. 5443–5457.

    Article  PubMed  CAS  Google Scholar 

  8. Behe, M. and G. Felsenfeld, Effects of mthylation on a synthetic polynucleotide: the BZ transition in poly(dG-m dC) poly(dG-m-dC) Proc. Natl. Acad. Sci. USA, 1981. 78: p. 1619–1623.

    Article  PubMed  CAS  Google Scholar 

  9. Singleton, C.K., J. Klysik, S.M. Stirdivant, and R.D. Wells, Left-handed Z-DNA is induced by supercoiling in physiological ionic conditions Nature, 1982. 299: p. 312–316.

    Article  PubMed  CAS  Google Scholar 

  10. Peck, L. and J.C. Wang, Energetics of B-to-Z transition in DNA Proc. Natl. Acad. Sci. USA, 1983. 80: p. 6206–6210.

    Article  PubMed  CAS  Google Scholar 

  11. Ellison, M.J., R.J. Kelleher, III, A.H.-J. Wang, J.F. Habener and A. Rich, Sequence-dependent energetics of the B-Z transition in supercoiled DNA containing nonalternating purine pyrimidine sequences Proc. Natl. Acad. Sci. USA, 1985. 82: p. 8320–8324.

    Article  PubMed  CAS  Google Scholar 

  12. McLean, M.J., J.A. Blaho, M.W. Kilpatrick and R.D. Wells, Consecutive A-T pairs can adopta left-handed DNA structure Proc. Natl. Acad. Sci. USA, 1986. 83: p. 5884–5888.

    Article  PubMed  CAS  Google Scholar 

  13. Zacharias, W., T.R. O’Connor, and J.E. Larson, Methylation of cytosine in the 5-position alters the structural and energetic properties of the supercoil-induced Z-helix and of BZjunctions Biochemistry, 1988. 27: p. 2970–2978.

    Article  PubMed  CAS  Google Scholar 

  14. Ho, P.S., M.J. Ellison, G.J. Quigley, and A. Rich, A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences EMBO J., 1986. 5(10): p. 2737–2744.

    PubMed  CAS  Google Scholar 

  15. Ellison, M.J., J. Feigon, R.J. Kelleher, III, A.H.-J. Wang, J.F. Habener, and A. Rich, An assessment of the Z-DNA forming potential of alternating dA-dT stretches in supercoiled plasmids Biochemistry, 1986. 25: p. 3648–3655.

    Article  PubMed  CAS  Google Scholar 

  16. Liu, L.F. and J.C. Wang, Supercoiling of the DNA template during transcription Proc. Natl. Acad. Sci. USA, 1987. 84(20): p. 7024–7027.

    Article  PubMed  CAS  Google Scholar 

  17. Schroth, G.P., P.J. Chou, and P.S. Ho, Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of Z-DNA forming sequences in human genes J. Biol. Chem., 1992. 267: p 11846–11855.

    PubMed  CAS  Google Scholar 

  18. Jiang, H., W. Zacharias, and S. Amirhaeri, Potassium permanganate as an in situ probe for B-Z and Z-Z junctions Nucleic Acids Res., 1991. 19: p. 6943–6948.

    Article  PubMed  CAS  Google Scholar 

  19. Palacek, E., E. Rasvoka, and P. Boublikova, Probing of DNA polymorphic structure in the cell with osmium tetroxide Biochem. Biophys. Res. Commun., 1988. 150: p. 731–738.

    Article  Google Scholar 

  20. Zheng, G., T. Kochel, R.W. Hoepfner, S.E. Timmons, and R.R. Sinden, Torsionally tuned cruciform and Z-DNA probes for measuring unrestrained supercoiling at specific sites in DNA of living cells J. Mol. Biol., 1991. 221: p. 107–129.

    Article  PubMed  CAS  Google Scholar 

  21. Jaworski, A., W.-T. Hsieh, J.A. Blaho, and J.E. Larson, Left-handed DNA in vivo Science, 1987. 238: p. 773–777.

    Article  PubMed  CAS  Google Scholar 

  22. Rahmouni, A.R. and R.D. Wells, Stabilization of Z-DNA in vivo by localized supercoiling Science, 1989. 246: p. 358–363.

    Article  PubMed  CAS  Google Scholar 

  23. Jaworski, A., N.P. Higgins, R.D. Wells, and W. Zacharias, Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo J. Biol. Chem., 1991. 266: p. 2576–2581.

    PubMed  CAS  Google Scholar 

  24. Lafer, E.M., R.P.C. Valle, A. Moller, A. Nordheim, P.H. Schur, A. Rich, and B.D. Stollar, Z-DNA-specific antibodies in Human systemic lupus erythematosis J. Clin. Invest., 1983. 71: p. 314–321.

    Article  PubMed  CAS  Google Scholar 

  25. Lafer, E.M., R. Sousa, R. Ali, A. Rich, and B.D. Stollar, The effect of anti-Z-DNA antibodies on the B-DNA-Z-DNA equilibrium J. Biol. Chem., 1986. 261: p 6438–6443.

    PubMed  CAS  Google Scholar 

  26. Nordheim, A., M.L. Pardue, E.M. Lafer, A. Moller, B.D. Stollar, and A. Rich, Antibodies to left handed Z-DNA bind to interband regions of Drosophila polytene chromosomes Nature, 1981. 294: p. 417–422.

    Article  PubMed  CAS  Google Scholar 

  27. Lancillotti, F., M.C. Lopez, P. Arias, and C. Alonco, Z-DNA in transcriptionally active chromosomes Proc. Natl. Acad. Sci. USA, 1987. 84: p. 1560–1564.

    Article  PubMed  CAS  Google Scholar 

  28. Hill, R.J., Z-DNA; a prodrome for the 1990s J. Cell Sci., 1991. 99: p 675–680.

    PubMed  CAS  Google Scholar 

  29. Lipps, H.J., A. Nordheim, E.M. Lafer, D. Ammermann, B.D. Stollar, and A. Rich, Antibodies against Z-DNA react with the macronucleus but not the micronucleus of the hypotrichous ciliate Stylonychia mytilus Cell, 1983. 32: p 435–441.

    Article  PubMed  CAS  Google Scholar 

  30. Jackson, D.A. and P.R. Cook, A general method for preparing chromatin containing intact DNA EMBO J., 1985. 4: p. 913–918.

    PubMed  CAS  Google Scholar 

  31. Jackson, D.A., J. Yuan, and P.R. Cook, A gentle method for preparing cyto-and nucleoskeletons and associated chromatin J. Cell Sci., 1988. 90: p. 365–378.

    PubMed  CAS  Google Scholar 

  32. Wittig, B., T. Dorbic, and A. Rich, The level of Z-DNA in the metabolically active, permeabilized mammalian cell nuclei is regulated by torsional strain J. Cell Biol., 1989. 108: p 755–764.

    Article  PubMed  CAS  Google Scholar 

  33. Wittig, B., T. Dorbic, and A. Rich, Transcription is associated with Z-DNA formation in metabolically active permeabilized mammalian cell nuclei Proc. Natl. Acad. Sci. USA, 1991. 88: p. 2259–2263.

    Article  PubMed  CAS  Google Scholar 

  34. Wittig, B., S. Wolff, T. Dorbic, W. Vahrson, and A. Rich, Transcription of human cmyc in permeabilized nuclei is associated with formation of Z-DNA in three discrete regions of the gene EMBO J., 1992. 11: p. 4653–4663.

    PubMed  CAS  Google Scholar 

  35. Wolff, S., B. Wittig, and A. Rich, Identification of transcriptionally induced Z-DNA segments in the human c-myc gene Biochim. Biophys. Acta, 1995. 1264: p 294–302.

    Article  Google Scholar 

  36. Wolff, S., C. Martinez, A. Rich, and J.A. Majzoub, Transcription of the human corticotropin-releasing hormone gene in NPLC cells is correlated with Z-DNA formation Proc. Natl. Acad. Sci. USA, 1996. 93

    Google Scholar 

  37. Peck, L.J. and J.C. Wang, Transcriptional block caused by a negative supercoiling induced structural change in an alternating CG sequence Cell, 1985. 40: p 129–137.

    Article  PubMed  CAS  Google Scholar 

  38. Pohl, F.M., Ein Modell der DNS-struktur. Naturwissenschaften, 1967.54: p. 616.

    Article  PubMed  CAS  Google Scholar 

  39. Treco, D. and N. Amheim, The evolutionary conserved repetitive sequence d(TG.AC) n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Mol. Cell. Biol., 1986. 6: p. 3934–3947.

    PubMed  CAS  Google Scholar 

  40. Bullock, P., J. Miller, and M. Botchan, Effects ofpoly[d(pGpT).d(pApC)J and poly[d(pCpG).d(pCpG)J repeats on homologous recombination in somatic cells. Mol. Cell. Biol., 1986. 6(11): p. 3948–3953.

    PubMed  CAS  Google Scholar 

  41. Wahls, W.P., L.J. Wallace, and P.D. Moore, The Z-DNA motif d(TG)30 promotes reception of information during gene conversion while stimulating homologous recombination in human cells in culture. Mol. Cell. Biol., 1990. 10(2): p. 785–793.

    PubMed  CAS  Google Scholar 

  42. Aplan, P.D., S.C. Raimondi, and I.R. Kirsch, Disruption of the SCL gene by a 1(1;3) translocation in a patient with T cell acute lymphoblastic leukemia EMBO. J., 1989. 8(9): p. 2621–2631.

    Google Scholar 

  43. Boehm, T., L. Mengle-Gaw, U.R. Kees, N. Spurr, I. Lavenir, A. Forster, and T.H. Rabbitts, Alternating purine pyrimidine tracts may promote chromosomal translocations seen in a variety of human lymphoid tumours EMBO J., 1989. 8(9): p. 2621–2631.

    PubMed  CAS  Google Scholar 

  44. Satyanarayana, K. and J.L. Strominger, DNA sequences near a meiotic recombinational breakpoint within the human HLA-DQ region Immunogenetics, 1992. 35(4): p. 235–240.

    Article  PubMed  CAS  Google Scholar 

  45. Steinmetz, M., D. Stephan, and K.F. Lindahl, Gene organization and recombinational hotspots in the murine major histocompatibility complex Cell, 1986. 44: p. 895–904.

    Article  PubMed  CAS  Google Scholar 

  46. Weinreb, A., D.R. Katzenberg, G.L. Gilmore, and B.K. Birshtein, Site of unequal sister chromatid exchange contains a potential Z-DNA forming tract. Proc. Natl. Acad. Sci. USA, 1991. 85(2): p. 529–533.

    Article  Google Scholar 

  47. Gamer, M.M. and G. Felsenfeld, Effect of Z-DNA on nucleosome placement J. Mol. Biol., 1987. 196: p. 581–590.

    Article  Google Scholar 

  48. Soyer-Gobillard, M.O., M.L. Geraud, D. Coulaud, M. Barray, B. Theveny, B. Revet, and E. Detain, Location of B- and Z-DNA in the chromosome of a primitive eukaryote dinoflagellate J. Cell. Biol., 1990. 111(2): p. 293–304.

    Article  PubMed  CAS  Google Scholar 

  49. Wolff, S., W. Vahrson, and A.G. Herbert, Analysis of left handed Z-DNA in vivo, in DNA and Nucleoprotein Structure in Vivo, H.P. Saluz and K. Wiebauer, Editors. 1995, Landes Co.: Austin, TX. p. 137–159.

    Google Scholar 

  50. Krishna, P., B.P. Kennedy, D.M. Waisman, J.H. van de Sande, and J.D. McGhee, Are many Z-DNA binding proteins actually phospholipid-binding proteins? Proc. Natl. Acad. Sci. USA, 1990. 87: p. 1292–1295.

    Article  PubMed  CAS  Google Scholar 

  51. Rohner, K.J., R. Hobi, and C.C. Kuenzle, Z-DNA-binding proteins. Identification critically depends on the proper choice of ligands J. Biol. Chem., 1990. 265: p. 19112–19115.

    PubMed  CAS  Google Scholar 

  52. Bass, B.L., K. Nihikura, W. Keller, P.H. Seeburg, R.B. Emeson, M.A. O’Connell, C.E. Samuel, and A. Herbert, A standardized nomenclature for adenosine deaminases that act on RNA, RNA, 1997. 3: p. 947–949.

    PubMed  CAS  Google Scholar 

  53. Herbert, A.G. and A. Rich, A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide Nucleic Acids Res., 1993. 21: p. 2669–2672

    Article  PubMed  CAS  Google Scholar 

  54. Herbert, A.G., J.R. Spitzner, K. Lowenhaupt, and A. Rich, Z-DNA binding protein from chicken blood nuclei Proc. Natl. Acad. Sci. USA, 1993. 90: p. 3339–3342.

    Article  PubMed  CAS  Google Scholar 

  55. Herbert, A.G., K. Lowenhaupt, J.R. Spitzner, and A. Rich, Chicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA Proc. Natl. Acad. Sci. USA, 1995. 92: p. 7550–7554.

    Article  PubMed  CAS  Google Scholar 

  56. Herbert, A., J. Alfken, Y.-G. Kim, S. Mian, K. Nishikura, and A. Rich, A Z-DNA binding domain present in the human rditing enzyme,double-stranded RNA adenosine deaminase Proc. Natl. Acad. Sci, USA, 1997. 94: p. 8421–8426.

    Article  PubMed  CAS  Google Scholar 

  57. Herbert, A., M. Schade, K. Lowenhaupt, J. Alfken, T. Schwartz, L.S. Shlyakhtenko, Y.L. Lyubchenko, and A. Rich, The Za domain from human ADAR1 binds to the Z-DNA conformer of many different sequences Nucleic Acids Research, 1998. 26: p. 3486–3493.

    Article  PubMed  CAS  Google Scholar 

  58. Schwartz, T., K. Lowenhaupt, Y.-G. Kim, L. Li, B.A. Brown, A. Herbert, and A. Rich, Proteolytic dissection of Zab, the Z-DNA binding domain of human ADAR1 Journal of Biological Chemistry, 1998, (in press).

    Google Scholar 

  59. Herbert, A., Y.-G. Kim, J. Alfken, K. Nishikura, and A. Rich, A Z-DNA binding domain from the human editing enzyme dsRNA adenosine deaminase. Proceedings of the National Academy of Science, USA, 1997. 94: p. 12875–12879.

    Article  Google Scholar 

  60. Berger, I., W.W. R. Manoharan, T. Schwartz, J. Alfken, Y.-G. Kim, K. Lowenhaupt, A. Herbert, and A. Rich, Spectroscopic characterization of Za, a novel DNA binding domain from human ADAR1. Biochemistry, 1998. 37: p. 13313–13321.

    Article  PubMed  CAS  Google Scholar 

  61. Ramakrishnan, V., J.T. Finch, V. Graziano, P.L. Lee, and R.M. Sweet, Crystal structure of the globular domain of histone 115 and its implications for nucleosome binding Nature, 1993. 362: p. 219–223.

    Article  PubMed  CAS  Google Scholar 

  62. Clark, K.L., E.D. Halay, E. Lai, and S.K. Burley, Co-crystal structure of the HNF3/fork head DNA recognition motif resembles histone H5 Nature, 1993. 364: p. 412–420.

    Article  PubMed  CAS  Google Scholar 

  63. Schade, M., C. Turner, K. Lowenhaupt, A. Rich, and A. Herbert, Structure/function analysis of the Z-DNA binding domain Za of ADAR1 reveals similarity to (a + b) family of helix-turn-helix proteins EMBO Journal, 1998: (in press).

    Google Scholar 

  64. Kim, U., Y. Wang, T. Sanford, Y. Zeng, and K. Nishikura, Molecular cloning of a cDNA for double-strande RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing Proc. Natl. Acad. Sci. USA, 1994. 91: p. 11457–11461.

    Article  PubMed  CAS  Google Scholar 

  65. O’Connell, M., S. Krause, M. Higuchi, J.J. Hsuan, N.F. Totty, A. Jenny, and W. Keller, Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell. Biol., 1995. 15(3): p. 1389–1397.

    PubMed  Google Scholar 

  66. Hough, R.F. and B.L. Bass, Analysis ofXenopus dsRNA adenosine deaminase cDNAs reveals similarities to DNA methyltransferase RNA, 1997. 3: p. 356–370.

    PubMed  CAS  Google Scholar 

  67. Liu, Y., C.X. George, J.R. Patterson, and C.E. Samuel, Functionally distinct double-stranded RNA-binding domains associated with alternative splice variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase. J. Biol. Chem., 1997. 14: p. 4419–4428.

    Google Scholar 

  68. Patterson, J.B. and C.E. Samuel, Expression and regulation by interferon of a doublestranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol. Cell. Biol., 1995. 15: p. 5376–5388.

    PubMed  CAS  Google Scholar 

  69. Liu, Y.A. Herbert, R. A., and C.E. Samuels, Double-stranded RNA-specific adenosine deaminase nucleic acid binding properties Methods, 1998. 15: p. 199–205.

    Article  PubMed  Google Scholar 

  70. Bass, B.L. and H. Weintraub, A developmentally regulated activity that unwinds RNA duplexes Cell, 1987. 48: p. 607–613.

    Article  PubMed  CAS  Google Scholar 

  71. Rebagliati, M.R. and D.A. Melton, Antisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity Cell, 1987. 48: p. 599–605.

    Article  PubMed  CAS  Google Scholar 

  72. Bass, B.L. and H. Weintraub, An unwinding activity that covalently modifies its double-stranded RNA substrate Cell, 1988. 55: p. 1089–1098.

    Article  PubMed  CAS  Google Scholar 

  73. Poison, A.G., P.F. Crain, S.C. Pomerantz, J.A. McCloskey, and B.L. Bass, The mechanism of adenosine to inosine conversion by the double-stranded RNA unwinding /modifying activity: a high performance liquid chromatography-mass spectrometry analysis Biochemistry, 1991. 30: p 11507–11514.

    Article  Google Scholar 

  74. Sommer, B., M. Kohler, R. Sprengel, and P.H. Seeburg, RNA editing in brain controls a determinant of ion flow in glutamate-gated channels Cell, 1991. 67: p 11–19.

    Article  PubMed  CAS  Google Scholar 

  75. Hume, R.I., R. Dingledine, and S.F. Heinemann, Identification of a site in the glutamate receptor subunits that controls calcium permeability Science, 1991. 253: p 1028–1031.

    Article  PubMed  CAS  Google Scholar 

  76. Verdoorn, T.A., N. Bumashev, H. Monyer, P.H. Seeburg, and B. Sakmann, Structural determinants of ion flow through recombinant glutamate receptor channels Science, 1991. 252: p. 1715–1718.

    Article  PubMed  CAS  Google Scholar 

  77. Melcher, T., S. Maas, R. Sprengel, M. Higuchi, and P.H. Seeburg, RED2, a brain-specific member of the RNA-specific adenosine deaminase family J. Biol. Chem., 1996. 271: p. 31795–31798.

    Article  PubMed  CAS  Google Scholar 

  78. Kohler, M., N. Bumashev, B. Sakmann, and P.H. Seeburg, Determinants of Ca2+ permeability in both TMI and TM2 of high affinity kainate receptor channels: diversity by RNA editing Neuron, 1993. 10: p 491–500.

    Article  PubMed  CAS  Google Scholar 

  79. Lomeli, H., J. Mosbacher, T. Melcher, T. Hoger, J.R. Geiger, T. Kuner, H. Monyer, M. Higuchi, A. Bach, and P.H. Seeburg, Control of kinetic properties of AMPA receptor channels by nuclear RNA editing Science, 1994. 266: p. 1709–1713.

    Article  PubMed  CAS  Google Scholar 

  80. Ma, J., R. Qian, F.M. Rausa and K.J. Colley, Two naturally occurring a2,6Sialyltransferase forms with a single amino acid change in the catalytic domain differ in their catalytic activity and proteolytic processing J. Biol. Chem., 1997. 272: p. 672–679.

    Article  PubMed  CAS  Google Scholar 

  81. Bums, C.N., H. Chu, S.M. Rueter, L.K. Hutchinson, H. Canton, E. Sanders-Bush, and R. Emeson, Regulation of serotonin-2C receptor G-protein coupling by RNA editing Nature, 1997. 387: p. 303–308.

    Article  Google Scholar 

  82. Patton, De., T. Silva, and F. Bezanilla, RNA editing generates a diverse array of transcripts encoding squid Kv2 K + channels with altered functional propertiesNeuron, 1997. 19: p. 711–722.

    Article  PubMed  CAS  Google Scholar 

  83. Paul, M.L. and B.L. Bass, Inosine exists in mRNA at tissue-specific levels and is most abundant in brain mRNA EMBO J., 1998. 16: p. 1120–1127.

    Article  Google Scholar 

  84. Morse, D.P. and B.L. Bass, Detection of inosine in messenger RNA by inosine specific cleavage Biochemistry, 1997. 36: p. 8429–8434.

    Article  PubMed  CAS  Google Scholar 

  85. Bass, B.L., RNA editing: New uses for old players in the RNA world, in The RNA World, R.F. Gesteland and J.F. Atkins, Editors. 1993, Cold Spring Harbor Laboratory Press: Plainview, NY. p. 383–418.

    Google Scholar 

  86. Herbert, A.G., RNA editing,introns and evolution Trends in Genet., 1996. 12(1): p. 69.

    Article  Google Scholar 

  87. Higuchi, M., F.N. Single, M. Kohler, B. Sommer, R. Sprengel, and P.H. Seeburg, RNA editing ofAMPA receptor subunit GIuR-B: a base paired intron-exon structure determines position and efficiency Cell, 1993. 75: p. 1361–1370.

    Article  PubMed  CAS  Google Scholar 

  88. Herb, A., M. Higuchi, R. Sprengel, and P.H. Seeburg, Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences Proc. Natl. Acad. Sci. USA, 1996. 93: p. 1875–1880.

    Article  PubMed  CAS  Google Scholar 

  89. Egebjerg, J., V. Kukekov, and S.F. Heinemann, Intron sequence directs RNA editing of the glutamate receptor GluR2 coding sequence Proc. Natl. Acad. Sci. USA, 1994. 91: p. 10270–10274.

    Article  PubMed  CAS  Google Scholar 

  90. Takeuchi, H., N. Hanamura, and I. Harada, Structural specificity of peptides in Z-DNA formation and energetics of the peptide-induced B-Z transition of poly(dG-m 5 C). J. Mol.Biol., 1994. 236(2): p. 610–617.

    Article  PubMed  CAS  Google Scholar 

  91. Arndt-Jovin, D.J., A. Udvardy, M.M. Gamer, S. Ritter, and T. Jovin, Z-DNA binding and inhibition by GTP of Drosophila Topoisomerase II Biochemistry, 1993. 32(18): p. 4862–4872.

    Article  PubMed  CAS  Google Scholar 

  92. Bechert, T., S. Diekmann, and D.J. Arndt-Jovin, Human 170 kDa and 180 kDa topoisomerases II bind preferentially to curved and left-handed linear DNA J. Biomol. Struct. Dyn., 1994. 12(3): p. 605–623.

    Article  PubMed  CAS  Google Scholar 

  93. Glikin, C.G., M.T. Jovin, and D.J. Arndt-Jovin, Interactions of Drosophila DNA topoisomerase II with left-handed Z-DNA in supercoiled minicircles Nucleic Acids Res., 1991. 19: p. 7139–7144.

    Article  PubMed  CAS  Google Scholar 

  94. Dawkins, R., The blind watchmaker 1986: Harlow: Longman Scientific and Technical.

    Google Scholar 

  95. Wang, J., Y. Zeng, J.M. Murray, and K. Nishikura, Genomic organization and chromosomal location of the human dsRNA adenosine deaminase gene: the enzyme for glutamate-activated ion channel RNA editing J. Mol. Biol., 1995. 254: p. 184–195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herbert, A., Rich, A. (1999). Left-Handed Z-DNA: Structure and Function. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics