Skip to main content

DNA Repeats in the Human Genome

  • Chapter
  • 300 Accesses

Part of the book series: NATO Science Series ((ASHT,volume 71))

Abstract

Repetitive DNA sequences, interspersed through out the human genome, are capable of forming a wide variety of unusual DNA structures with simple and complex loopfolding patterns. The hairpin formed by the fragile X repeat, (CCG)n, and the bipartite triplex formed by the Friedreich’s ataxia repeat, (GAA)n/(TTC)n, show simple loopfolding. On the other hand, the doubly folded hairpin formed by the human centromeric repeat, (AATGG)n, the hairpin G-quartet formed by (TTAGGG)n at the 3’ telomere overhang, and the hairpin G-quartet, and hairpin C+•C paired i-motif formed by the insulin minisatellite \( {\left({\begin{array}{*{20}{c}} {ACA{G_4}}{TGT{G_4}}\\ {TGT{C_4}}{ACA{C_4}} \end{array}}\right)_n}, \) show multiple and complex loopfolding.We have performed high resolution nuclear magnetic resonance (NMR) spectroscopy and in vitro replication to show that unique base-pairing and loopfolding render stability to these unusual structures under physiological conditions. The formation of such stable structures offers a mechanism of unwinding which is advantageous during transcription. For example, the formation of the hairpin G-quartet, and hairpin C+•C paired i-motif upstream of the insulin gene may facilitate transcription. These unusual DNA structures also provide unique “protein recognition motifs” quite different from a Watson-Crick double helix. For example, the hairpin G-quartet formed by (TTAGGG)n at the 3’ telomere overhang is specifically recognized and yeast homologue, may stabilize the human telomere by binding to the multiply folded hairpin G-quartet structures

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moyzis, R.K., Torney, D.C., Meyne, J., Buckingham, J.M., Wu, J.-R., Burks, C., Sirotkin, K.M., and Goad, W.B. (1989). The Distribution of interspersed repetitive DNA sequences in the human genome. Genomics, 4:273–289.

    Article  PubMed  CAS  Google Scholar 

  2. Stallings, R. L., Torney, D.C., Hildebrand, C.E., Longmire, J.L., Deaven, L.L., Jett, J. H., Doggett, N.A., and Moyzis, R.K. (1990). Physical mapping of human chromosomes by repetitive sequence finger printing. Proc. Natl. Acad. Sci. USA, 87:6218–6222.

    Article  PubMed  CAS  Google Scholar 

  3. Orgel, L.E, Crick, F.H. and Sapienza C. (1980). Selfish DNA. Nature, 288:645–646.

    Article  PubMed  CAS  Google Scholar 

  4. Lee, C., Wevrick, R., Fisher R.B., Ferguson-Smith, M.A., and Lin, C.C. (1997). Human centromeric DNAs. Human Genetics, 100:291–304.

    Article  PubMed  CAS  Google Scholar 

  5. Wright, W.E., Tesmer, V.M., Huffman, K. E., Levene S.D., and Shay, J.W. (1997). Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes and Development, 11:2801–2809.

    Article  PubMed  CAS  Google Scholar 

  6. Moyzis, R.K. (1990). The Human Telomere. Structure & Methods, 1:61–67.

    CAS  Google Scholar 

  7. Caskey, C.T., Pizzuti, A., Fu, Y-H., Fenwick, R.G. and Nelson, D.L. (1992). Triplet repeat mutations in human disease. Science, 256:784–789.

    Article  PubMed  CAS  Google Scholar 

  8. Krontiris, T.G. (1995). Minisatellites and human disease. Science, 269, 1682–1683.

    Article  PubMed  CAS  Google Scholar 

  9. Wells, R.D. (1996). Molecular basis of genetic instability of triplet repeats. J. Biol. Chem, 271:2875–2878.

    PubMed  CAS  Google Scholar 

  10. McMurray, C.T. (1995). Mechanisms of DNA expansion. Chromosoma, 4:2–13.

    Google Scholar 

  11. Pieretti, M., Zhang, F., Fu, Y.-H., Warren, S.T., Oostra, B.A., Caskey, C.T., and Nelson, D.L. (1991). Absence of expression of the FMR-1 gene in Fragile X Syndrome. Cell, 66:817–822.

    Article  PubMed  CAS  Google Scholar 

  12. Mahadevan, M., Tsilfidis, C., Sabourin, L., Shutler, G., Amemiya, C., Jansen, G., Neville, C., Marang, M., Barcelo, J., O’Hoy, K., Leblond, S., Earle-Macdonald, J., De Jong, P.J., Wieringa, B., and Korneluk, R.G. (1992). Myotonic Dystrophy Mutation: An unstable CTG repeat in the 3’ untranslated region of the gene. Science, 255:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  13. Campuzano V., Montermini, L, Molto, M.D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Canizres, J., Koutnikova, H., Bidichandani, S.I., Gellera, C., Brice, A., Trouillas, P., De Michele, G., Filla, A., De Fruots, R., Palau, F., Patel, P.I., Di Donato, S., Mandel J-L., Cocozza S., Koenig, M., and Pandolfo, M. (1996). Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science, 271:1423–1427.

    Article  PubMed  CAS  Google Scholar 

  14. Kennedy, G.C., German, M.S., and Rutter, W.J. (1995). The minisatellite in the diabetes susceptibility locus IDDM2 regulates insulin transcription. Nature Genetics, 9:293–298.

    Article  PubMed  CAS  Google Scholar 

  15. Sen, D. and Gilbert, W. (1992). Guanine quartet structures. Methods in Enzymology, 211:191–199.

    Article  PubMed  CAS  Google Scholar 

  16. Grady, D. L., Ratliff, R.L., Robinson, D.L., McCanlies, D.C., Meyne, J., and Moyzis, R.K. (1992). Highly conserved repetitive DNA sequences are present at human centromeres. Proc. Natl. Acad. Sei. USA, 89:1695–1699.

    Article  CAS  Google Scholar 

  17. Zawel, L. and Reinber, D. (1995). Common themes in assembly and function of eukaryotic transcription Complexes. Annu. Rev. Biochem, 64:533–561.

    Article  PubMed  CAS  Google Scholar 

  18. Mariappan, S.V.S., Chen X., Catasti, P., Chen, X., Ratliff, R., Moyzis, R.K., Bradbury, E.M., and Gupta, G. (1996). Bradbury, E. M., and Gupta, G. (1998). Structural studies on the unstable triplet repeats. Genetic Instabilities and Hereditary Neurological Disorder (Eds. R. D. Wells and S. T. Warren). Academic Press, pp 647–673.

    Google Scholar 

  19. Catasti, P., Chen, X., Bradbury, E.M., and Gupta, G. (1998). Structure, Motion, Interaction, and ExpMS 880ression of Biological Macromolecules (Eds. R. H. Sarma and M H. Sarma). Adenine Press, NY. pp 237–248.

    Google Scholar 

  20. Chen, X., Mariappan, S.V.S.R., Moyzis, R.K., Bradbury, E.M., and Gupta, G. (1998). Hairpin induced slippage and hyper-methylation of the fragile X DNA triplets. J. Biomol. Str. & Dyn, 15:745–756.

    Article  CAS  Google Scholar 

  21. Gacy, M.A., Goellner, G.M., Spiro, C., Chen, X., Gupta, G., Bradburry, E.M., Dyer, R.B., Mikesell, M.J., Yao, J.Z., Johnson, A.J., Richter, A., Melancon, S., McMurray, C.T. (1997). GAA instability in Friedreich’s ataxia shares a common, DNA-directed and intra-allelic mechanism with other trinucleotide diseases. Cell (molecular), 1:583–593.

    Google Scholar 

  22. Catasti, P., Chen, X., Moyzis, R.K., Bradbury, E.M., and Gupta, G. (1996). Structure-function correlations of the insulin-linked polymorphic region. J. Mol. Biol, 264,534545.

    Google Scholar 

  23. Catasti, P., Chen, X., Moyzis, R.K., Bradbury, E.M., and Gupta, G. (1997). Cytosine-rich strands of the insulin minisatellite adopt hairpins with intercalated cytosine+•cytosine pairs. J. Mol. Biol, 272,369–382.

    Article  PubMed  CAS  Google Scholar 

  24. Catasti P., Gupta G., Garcia A.E., Ratliff, R., Hong, L., Yau P., Moyzis, R.K., and Bradbury, E.M. (1994). Unusual structures of the tandem repetitive DNA sequences located at human centromeres. Biochemistry, 33:3819–3830.

    Article  PubMed  CAS  Google Scholar 

  25. Bell, M.V., Hirst, M.C., Nakahori, Y., MacKinnon, R.N., Roche, A., Flint, T.J, Jacobs, P.A., Tommerup, N., Tranebjaerg L., Froster-Iskenius, U., Kerr, B., Turner, G., Lindenbaum, R.H., Winter, R., Pembrey, M., Thibodeau, S. and Davies, K.E. (1991). Physical Mapping across the Fragile X: Hypermethylation and Clinical Expression of the Fragile X Syndrome. Cell, 64: 861–866.

    Article  PubMed  CAS  Google Scholar 

  26. de Graaf, E., Rouillard, P., Willems, P.J., Smits, A.P.T., Rousseau, F. and Oostra, B.A. (1995). Hotspot for deletions in the CGG repeat region of FMR-1 in fragile X patients. Human Molecular Genetics, 4:45–49.

    Article  Google Scholar 

  27. Laird, C.D. (1987). Proposed mechanism of inheritance and expression of the human Fragile-X syndrome of mental retardation. Genetics, 117:587–599.

    PubMed  CAS  Google Scholar 

  28. Oberle, I., Rousseau, F., Heitz, D., Kretz, C., Devys, D., Hanauer, A., Boue, J., Bertheas, M.F., and Mandel, J.L. (1991). Instability of a 550-Base pair DNA segement and abnormal methylatin in Fragile X syndrome. Science, 252:1097–1102.

    Article  CAS  Google Scholar 

  29. Eichler, E.E., Holden, J.J.A., Popovich, B.W., Reiss A.L., Snow, K., Thibodeau S. N., Richards C. S., Ward, P. A., and Nelson D. L. (1994). Length of uninterrupted CGG repeats determines instability in the FMR-1 gene. Nature Genetics, 8:88–92.

    Article  PubMed  CAS  Google Scholar 

  30. Chen, X., Mariappan, S.V.S., Catasti, P., Ratliff, R., Moyzis, R.K., Laayoun, A., Smith, S.S., Bradbury, E.M., and Gupta, G. (1995). Hairpins are formed by the single DNA strands of the Fragile X triplet repeats: Structure and biological implications. Proc. Nat’l. Acad. Sci. USA, 92:5199–5203.

    Article  CAS  Google Scholar 

  31. Mariappan, S.V.S., Chen, X., Catasti, P., Ratliff, R., Moyzis, R.K., Bradbury, E.M., and Gupta, G. (1996). Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n-(GGC)n. Nucl. Acids Res, 24:784–792.

    Article  PubMed  CAS  Google Scholar 

  32. Mariappan, S.V.S., Silks, L. P., Bradbury, E.M., and Gupta, G. (1998). Fragile X DNA triplet repeats, (GCC)n, form hairpins with cytosine+•cytosine mispairs at the CpG sites: isotope-edited NMR spectroscopy on (GCC)n with selective 15N4-labeled cytosines. JI. Mol. Biol, 283:111–120.

    Article  CAS  Google Scholar 

  33. Smith, S.S., Kaplan, B.E., Sowers, L.C., and Newman, E.M. (1992) Mechanism of human methyl-directed DNA methyltransferase and the fidelity of cytosine methylation. Proc. Natl. Acad. Sci, USA, 89:4744–4748.

    Article  CAS  Google Scholar 

  34. Klimassauskas, S., Kumar, S., Roberts, R.J. and Cheng, X. (1994). Hhal methyltransferase flips its target base out of the DNA helix. Cell, 76:357–369.

    Article  Google Scholar 

  35. Roberts, R.J. (1995). On base flipping. Cell, 82:639–645.

    Article  Google Scholar 

  36. Anteguera, F. and Bird, A. (1993). Number of Cp’G island and genes in human and mouse. Proc. Natl. Acad. Sci. USA, 90:11995–11999.

    Article  Google Scholar 

  37. Bird, A.P. (1986). CpG-rich island and the function of DNA methylation. Nature, 321:209–213.

    Article  PubMed  CAS  Google Scholar 

  38. Boyes, J. and Bird, A. (1992). Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO 111:327-333

    Google Scholar 

  39. Meehen, R.R., Lewis, J.D., McKay, S., Kleiner, E.L., and Bird, A. (1989). Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell, 58:499–507.

    Article  Google Scholar 

  40. Lewis, J.D., Meehan, R.R., Henzel, W.J., Maurer-Fogy, I., Jappesen, P., Klein, F., and Bird, A. (1992). Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell, 69:905–914.

    Article  PubMed  CAS  Google Scholar 

  41. Mitanchez, D., Doiron, B., Chen, R., and Kahn, A. (1997). Glucose-stimulated genes and pospects for gene therapy for type I diabetes. Endocrine Reviews, 18,520–540.

    Article  PubMed  CAS  Google Scholar 

  42. Bell, G.I., Karam, J.H., and Rutter, W.J. (1981). Polymorphic DNA region adjacent to the 5’ end of the human insulin gene. Proc. Natl. Acad. Sci. USA, 78,5759–5763.

    Article  PubMed  CAS  Google Scholar 

  43. Bell, G.I., Selby, M.J., and Rutter, W.J. (1982). The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature, 295, 31–35.

    Article  PubMed  CAS  Google Scholar 

  44. Bennett, S.T., Lucassen, A.M., Gough, S.C.L., Powell, E.E., Undlien, D.E., Pritchard, L.E., Merriman, M.E., Kawaguchi, Y., Dronsfield, M.J., Pociot, F., Nerup, J., Bouzekri, N., Cambon-Thomsen, A., Ronningen, K.S., Barnett, A.H., Bain, S.C., and Todd, J.A. (1995). Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nature Genetics, 9 284–292.

    Article  PubMed  CAS  Google Scholar 

  45. Hammond-Kosack, M.C., Dobrinski, B., Lurz, R., Docherty, K., and Kilpatrick, M.W. (1992). The human insulin gene linked polymorphic region exhibits an altered DNA structure. Nucl. Acids Res, 20, 231–236.

    Article  PubMed  CAS  Google Scholar 

  46. Ramsden, D.A. and Gellert, M. (1998). Ku protein stimulates DNA end joining by mammalian DNA ligases: a direct role for Ku in repair of DNA double-strand breaks. EMBOJ, 17: 609–614.

    Article  CAS  Google Scholar 

  47. Smider, V. and Chu, G. (1997). The end joining reaction in V(D)J recombination. Seminars in Immunology, 9:189–197.

    Article  PubMed  CAS  Google Scholar 

  48. Torrance, H., Giffin, W., Rodda, D.J., Pope, L., and Hache, R.J. (1998). Sequence-specific binding of Ku autoantigen to single-stranded DNA. JI. Biol. Chem, 273:20810–20819.

    Article  CAS  Google Scholar 

  49. Laroche T., Martin, S.G., Gotta, M., Gorham H.C., Pryde, F. E., Louis E.J., and Gasser, S.M. (1998). Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Current Biology, 8:653–666.

    Article  PubMed  CAS  Google Scholar 

  50. Boulton, S. J. and Jackson, S.P. (1996). Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucl. Acids Res, 24:4639–4648.

    Article  PubMed  CAS  Google Scholar 

  51. Polotnianka, R.M., Li, J., and Lustig, A.J. (1998). The yeast Ku hetero-dimer is essential for protection of the telomere against nucleolytic and recombinational activities. Current Biology, 8:831–834.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Catasti, P., Chen, X., Mariappan, S.V.S., Bradbury, E.M., Gupta, G. (1999). DNA Repeats in the Human Genome. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics