Skip to main content

Chromatin Control of HIV-1 Gene Expression

  • Chapter
Structural Biology and Functional Genomics

Part of the book series: NATO Science Series ((ASHT,volume 71))

Abstract

Upon infection of susceptible cells, the RNA genome of the human immunodeficiency virus type 1 (HIV-1) is reverse transcribed into double-stranded DNA, which can be subsequently integrated into the cellular genome. After integration, the viral long terminal repeat (LTR) promoter is present in a nucleosome-bound conformation and is transcriptionally silent in the absence of stimulation. Activation of HIV-I gene expression is concomitant with an acetylation-dependent rearrangement of the nucleosome positioned at the viral transcription start site. Thus, similar to most cellular genes, the transcriptional state of the integrated HIV-I provirus is closely linked to histone acetylation. This enzymatic activity results from the function of histone-specific nuclear acetyltransferase (HAT) enzymes. Efficient viral transcription is strongly dependent on the virally-encoded Tat protein. The mechanism by which Tat increases the rate of transcriptional initiation has been recently demonstrated and involves the interaction of Tat with the transcriptional coactivator p300 and the closely related CREB-binding protein (CBP), having histone acetyltransferase activity

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allfrey, V.G. 1977. Chromatin and chromosome structure. Academic Press, New York.

    Google Scholar 

  2. Arya, S.K., C. Guo, S.F. Josephs, and F. Wong-Staal. 1985. Trans-Activator gene of Human T-Lymphotropic Virus Type III (HTLV-IJI). 229: 69–73.

    CAS  Google Scholar 

  3. Avantaggiati, M.L., M. Carbone, Y. Nakatani, B. Howard, and A.S. Levine. 1996. The SV40 large T antigen and adenovirus ElA oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15: 2236–2248.

    PubMed  CAS  Google Scholar 

  4. Benkirane, M., R.F. Chun, H. Xiao, V.V. Ogryzko, B.H. Howard, Y. Nakatani, and K.T. Jeang. 1998. Activation of integrated provirus requires histone acetyltransferase. p300 and P/CAF are coactivators for HIV-1 Tat. J. Biol. Chem. 273: 24898–24905.

    Article  PubMed  CAS  Google Scholar 

  5. Berkhout, B., R.H. Silverman, and K.T. Jeang. 1989. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59: 273–282.

    Article  PubMed  CAS  Google Scholar 

  6. Brownell, J.E. and C.D. Allis. 1996. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr. Opin. Genet. Dev. 6: 176–184.

    Article  PubMed  CAS  Google Scholar 

  7. Calnan, B.J., S. Biancalana, D. Hudson, and A.D. Frankel. 1991. Analysis of argininerich peptides from the HIV-1 Tat protein reveals unusual features of RNA-protein recognition. Genes Dev. 5: 201–210.

    Article  PubMed  CAS  Google Scholar 

  8. Cujec, T.P., H. Okamoto, K. Fujinaga, J. Meyer, H. Chamberlin, D.O. Morgan, and B.M. Peterlin. 1997. The HIV transactivator TAT binds to the CDK-acti,..ting kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev. 11: 2645–2657.

    Article  PubMed  CAS  Google Scholar 

  9. Cullen, B. 1993. Does HIV-1 Tat induce a change in viral initiation rights? Cell 73: 417–420.

    Article  PubMed  CAS  Google Scholar 

  10. d’Adda di Fagagna F., G. Marzio, M.I. Gutierrez, L.K. Kang, A. Falaschi, and M. Giacca. 1995. Molecular and functional interactions of transcription factor USF with the Long Terminal Repeat of Human Immunodeficiency Virus type 1. J. Virol. 69: 2765–2775.

    Google Scholar 

  11. Demarchi, F., P. Bovenzi, D. Di Luca, and M. Giacca. 1996a. Transcriptional activation of human immunodeficiency virus type 1 by herpesvirus infection: an in vivo footprinting study. Intervirology 39: 236–241.

    Article  CAS  Google Scholar 

  12. Demarchi, F., F. d’Adda di Fagagna, A. Falaschi, and M. Giacca. 1996b. Activation of transcription factor NF-KB by the Tat protein of human immunodeficiency virus-1. J. Virol. 70: 4427–4437.

    CAS  Google Scholar 

  13. Demarchi, F., P. D’Agaro, A. Falaschi, and M. Giacca. 1993. In vivo footprinting analysis of constitutive and inducible protein-DNA interactions at the long terminal repeat of human immunodeficiency virus type 1. J. Virol. 67: 7450–7460.

    PubMed  CAS  Google Scholar 

  14. Eckner, R., M.E. Ewen, D. Newsome, M. Gerdes, J.A. De Caprio, J.B. Lawrence, and D.M. Livingston. 1994. Molecular cloning and functional analysis of the adenovirus El A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8: 869–884.

    Article  PubMed  CAS  Google Scholar 

  15. El Kharroubi, A., G. Piras, R. Zensen, and M.A. Martin. 1998. Transcriptional activation of the integrated chromatin-associated human immunodeficiency virus type 1 promoter. Mol. Cell. Biol. 18: 2535–2544.

    Google Scholar 

  16. El Kharroubi, A. and E. Verdin. 1994. Protein-DNA interactions within DNase I-hypersensitive sites located downstream of the HIV-1 promoter. J. Biol. Chem. 269: 19916–19924.

    PubMed  Google Scholar 

  17. Finch, J.T., M. Noll, and R.D. Kornberg. 1975. Electron microscopy of defined lengths of chromatin. Proc.Natl. Acad. Sci. USA 72: 3320–3322.

    Article  PubMed  CAS  Google Scholar 

  18. Ghosh, S., M. Selby, and B. Peterlin. 1993. Synergy between Tat and VP16 in trans-activation of the HIV-1 LTR. J. Mol. Biol. 234: 610–619.

    Article  PubMed  CAS  Google Scholar 

  19. Giebler, H.A., J.E. Loring, K. van Orden, M.A. Colgin, J.E. Garrus, K.W. Escudero, A. Brawweiler, and J.K. Nyborg. 1997. Anchoring of CREB binding protein to the human T-cell leukemia virus type 1 promoter: a molecular mechanism of Tax transactivation. Mol. Cell. Biol. 17: 5156–5164.

    CAS  Google Scholar 

  20. Giese, K., J. Cox, and R. Grosschedl. 1992. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 69: 185–195.

    Article  PubMed  CAS  Google Scholar 

  21. Giles, R.H., D.J.M. Peters, and M.H. Breuning. 1998. Conjunction dysfunction: CBP/p300 in human disease. Trends Genet. 14: 178–183.

    Article  PubMed  CAS  Google Scholar 

  22. Gold, M.O., X. Yang, C.H. Herrmann, and A.P. Rice. 1998. PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo J. Virol. 72: 4448–4453.

    PubMed  CAS  Google Scholar 

  23. Gu, W. and R.G. Roeder. 1997. Activation of p53 sequence specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90: 595–606.

    Article  PubMed  CAS  Google Scholar 

  24. Holstege, F.C., P.C. van der Vliet, and H.T. Timmers. 1996. Opening of an RNA polymerase Il promoter occurs in two distinct steps and requires the basal transcription factors IIE and IIH. EMBO J. 15: 1666–1677.

    PubMed  CAS  Google Scholar 

  25. Horikoshi, M., C. Bertuccioli, R. Takada, J. Wang, T. Yamamoto, and R.G. Roeder. 1992. Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc. Natl. Acad. Sci. USA 89: 1060–1064.

    Article  PubMed  CAS  Google Scholar 

  26. Hottiger, M.O. and G.J. Nabel. 1998. Interaction of human innunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J. Virol. 72: 8252–8256.

    PubMed  CAS  Google Scholar 

  27. Ikeda, K., K. Nagano, and K. Kawakami. 1993. Possible implications of Spl-induced bending of DNA on synergistic activation of transcription. Gene 136: 341–343.

    Article  PubMed  CAS  Google Scholar 

  28. Imhof, A., X.J. Yang, V.V. Ogryzko, Y. Nakatani, A.P. Wolffe, and H. Ge. 1997. Acetylation of general transcription factors by histone acetyltransferases. Cuff. Biol. 7: 689–692.

    CAS  Google Scholar 

  29. Jeang, K.T., R. Chun, N.H. Lin, A. Gatignol, C.G. Glabe, and H. Fan. 1993. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Spl transcription factor. J. Virol. 67: 6224–6233.

    PubMed  CAS  Google Scholar 

  30. Jones, K.A. 1997. Taking a new TAK on Tat transactivation. Genes Dev. 11: 2593–2599.

    Article  PubMed  CAS  Google Scholar 

  31. Jones, K.A. and B.M. Peterlin. 1994. Control of RNA initiation and elongation at the HIV-1 promoter. Annu. Rev. Biochem. 63: 717–743.

    Article  CAS  Google Scholar 

  32. Kashanchi, F., G. Piras, M.F. Radonovich, J.F. Duvall, A. Fattaey, C.M. Chiang, R.G. Roeder, and J.N. Brady. 1994. Direct interaction of human TFIID with the HIV-1 transactivator Tat. Nature 367: 295–299.

    Article  PubMed  CAS  Google Scholar 

  33. Koken, S.E., A.E. Greijer, K. Verhoef, J. van Wamel, A.G. Bukrinskaya, and B. Berkhout. 1994. Intracellular analysis of in vitro modified HIV Tat protein. J. Biol. Chem. 269: 8366–8375.

    PubMed  CAS  Google Scholar 

  34. Kuo, M.-H. and C.D. Allis. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20: 615–626.

    Article  PubMed  CAS  Google Scholar 

  35. Laughlin, M.A., G.Y. Chang, J.W. Oakes, F. Gonzalez-Scarano, and R.J. Pomerantz. 1995. Sodium butyrate stimulation of HIV-1 gene expression: a novel mechanism of induction independent of NF-kappa B. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 9: 332–339.

    Article  PubMed  CAS  Google Scholar 

  36. Laughlin, M.A., S. Zeichner, D. Kolson, J.C. Alwine, T. Seshamma, R.J. Pomerantz, and F. Gonzalez- Scarano. 1993. Sodium butyrate treatment of cells latently infected with HIV-1 results in the expression of unspliced viral RNA. Virology 196: 496–505.

    Article  PubMed  CAS  Google Scholar 

  37. Luger, K., A.W. Mäder, R.K. Richmond, D.F. Sargent, and T.J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251–260.

    Article  PubMed  CAS  Google Scholar 

  38. Luger, K. and T.J. Richmond. 1998. DNA binding within the nucleosome core. Curr. Opin. Struct. Biol. 8: 33–40.

    Article  PubMed  CAS  Google Scholar 

  39. Lundblad, J.R., R.P. Kwok, M.E. Laurance, M.L. Harter, and R.H. Goodman. 1995. Adenoviral ElA-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374: 85–88.

    Article  PubMed  CAS  Google Scholar 

  40. Marzio, G., M. Tyagi, M.I. Gutierrez, and M. Giacca. 1998. HIV-1 Tat transactivator recruits p300 and CBP histone acetyl transferases to the viral promoter. Proc. Natl. Acad. Sci. USA 23: 13519–13524.

    Article  Google Scholar 

  41. Maxon, M.E., J.A. Goodrich, and R. Tjian. 1994. Transcription factor IIE binds preferentially to RNA polymerase Ita and recruits TFIIH: a model for promoter clearance. Genes Dev. 8: 515–524.

    Article  PubMed  CAS  Google Scholar 

  42. Muesing, M.A., D.H. Smith, and D.J. Capon. 1987. Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701.

    Article  PubMed  CAS  Google Scholar 

  43. Owen-Hughes, T. and J.L. Workman. 1994. Experimental analysis of chromatin function in transcriptional control. Critical Review in Eukaryotic Gene Expression 4: 403–441.

    CAS  Google Scholar 

  44. Parada, C.A. and R.G. Roeder. 1996. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature 384: 375–378.

    Article  PubMed  CAS  Google Scholar 

  45. Paranjape, S.M., R.T. Kamakaka, and J.T. Kadonaga. 1994. Role of chromatin structure in the regulation of transcrption by RNA polymerase II. Annu. Rev. Biochem. 63: 265–297.

    Article  CAS  Google Scholar 

  46. Pomerantz, R.J., D. Trono, M.B. Feinberg, and D. Baltimore. 1990. Cells nonproductively infected with HIV-1 exhibit an aberrant pattern of viral RNA expression: a molecular model for latency. Cell 61: 1271–1276.

    Article  PubMed  CAS  Google Scholar 

  47. Rosen, C.A., J.G. Sodroski, and W.A. Haseltine. 1985. The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41: 813–823.

    Article  PubMed  CAS  Google Scholar 

  48. Steger, D.J. and J.L. Workman. 1997. Stable co-occupancy of transcription factors and histones at the HIV-I enhancer. EMBO J. 16: 2463–2472.

    Article  PubMed  CAS  Google Scholar 

  49. Thomas, J.O. and R.D. Kornberg. 1975. An octamer of histones in chromatin and free in solution. Proc. Natl. Acad. Sci. USA 72: 2626–2630.

    Article  PubMed  CAS  Google Scholar 

  50. Turner, B.M. 1993. Decoding the nucleosome. Cell 75: 5–8.

    PubMed  CAS  Google Scholar 

  51. van Holde, K. and J. Zlatanova. 1996. What determines the folding of the chromatin fiber? Proc. Natl. Acad. Sci. U.S.A 93: 10548–10555.

    Article  PubMed  Google Scholar 

  52. Van Lint, C., S. Emiliani, M. Ott, and E. Verdin. 1996. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15: 1112–1120.

    PubMed  Google Scholar 

  53. Verdin, E. 1991. DNase I-hypersensitive sites are associated with both long terminal repeats and with the intragenic enhancer of integrated human immunodeficiency virus type 1. J. Virol. 65: 6790–6799.

    PubMed  CAS  Google Scholar 

  54. Verdin, E., P. Paras, Jr., and C. Van Lint. 1993. Chromatin disruption in the promoter of human immunodeficiency virús type 1 during transcriptional activation. EMBO J. 12: 3249–3259.

    PubMed  CAS  Google Scholar 

  55. Wei, P., M.E. Garber, S.-M. Fang, W.H. Fisher, and K.A. Jones. 1998. A novel CDK9associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 92: 451–462.

    Article  PubMed  CAS  Google Scholar 

  56. Wolffe, A.P. 1994. Transcription: in tune with the histones. Cell 77: 13–16.

    Article  PubMed  CAS  Google Scholar 

  57. Wolffe, A.P. and D. Pruss. 1996. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell 84: 817–819.

    Article  PubMed  CAS  Google Scholar 

  58. Workman, J.L., I.C.A. Taylor, R.E. Kingston, and R.G. Roeder. 1989. Control of class II gene transcription during in vitro nucleosome assembly. In Methods in Enzymology (ed. P.M. Wasserman and R.D. Kornberg), pp. 419–447. Academic Press, San Diego.

    Google Scholar 

  59. Zhu, Y., T. Pe’ery, J. Peng, Y. Ramanathan, N. Marshall, T. Marshall, B. Amendt, M.B. Mathews, and D.H. Price. 1997. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro Genes Dev. 11: 2622–2632.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marzio, G., Giacca, M. (1999). Chromatin Control of HIV-1 Gene Expression. In: Bradbury, E.M., Pongor, S. (eds) Structural Biology and Functional Genomics. NATO Science Series, vol 71. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4631-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4631-9_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5782-7

  • Online ISBN: 978-94-011-4631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics