Skip to main content

Biological Foundations of Life

  • Chapter
  • 214 Accesses

Part of the book series: NATO Science Series ((ASIC,volume 532))

Abstract

It is possible to simulate, in the laboratory, conditions that may have existed on the prebiotic Earth producing a range of prebiotic compounds. A fundamental question is now to know all kinds of primeval or simple lifes possible and hence what kind of signature of life it is possible to expect on another planets or systems. Entities like-cells might exist (or may have existed) without pedigrees or genealogical history but with a physical history. We have to search all kind of architecture of life in and out the conventional lineages.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, D. A.; Wickramasinghe, D. T. “Discovery of organic grains in comet Wilson”. Nature 1987, 329, 615–616.

    Article  Google Scholar 

  • Altaian, S. “Ribonuclease P: an enzyme with a catalytic RNA subunit.” Advances in enzymology, F.F. Nord and A. Meister; Interscience, New York, 1989, vol. 62, 1–36.

    Google Scholar 

  • Anders, E. “Pre-biotic organic matter from comets and asteroids”. Nature 1989, 342, 255–257.

    Article  Google Scholar 

  • Bernal, J. D. “The physical basis of life” Routeledge and Kegen Paul, London, 1951.

    Google Scholar 

  • Bichat, X. “Recherches physiologiques sur la vie et la mort”, (1800) édition intégrale, Editions Gérard & C°, Venders, Belgique, 1973.

    Google Scholar 

  • Björk, G. R. “Biosynthesis and function of modified nucleosides”. In D. Söll and U. RajBandary (Eds.). RNA: Structure, biosynthesis, and function. American Soc. for Microbiology, Washington D.C., 1995, pp 165–204.

    Google Scholar 

  • Böhler, C.; Nielsen P. E.; Orgel, L. E. “Template switching between PNA and RNA oligonucleotides”. Nature 1995, 376, 578–581.

    Article  Google Scholar 

  • Bolli, M.; Micura, R.; Eschenmoser, A. “Pyranosyl-RNA: chiroselective self-assembly of base sequences by ligative oligomerization of tetranucleotide-2′,3′-cyclophosphates (with a commentary concerning the origin of biomolecular homochirality)”. Chem. & Biol 1997, 4, 309–320.

    Article  Google Scholar 

  • Bonner, W. A. “The origin and amplification of biomolecular chirality”. Origins Life Evol. Biosphere 1991, 21, 59–111.

    Article  Google Scholar 

  • Braterman, P. S.; Cairns-Smith, A. G.; Sloper, R. W. “Photo-oxidation of hydrated Fe2+. Significance for banded iron formations”. Nature 1983, 303, 163–164.

    Article  Google Scholar 

  • Breaker, R. R. “In vitro selection of catalytic polynucleotides”. Chem. Rev. 1991, 97, 371–390.

    Article  Google Scholar 

  • Butlerow, A. “Formation synthétique d’une substance sucrée”. C. R. Acad. Sci. Paris 1861, 55, 145.

    Google Scholar 

  • Carle, G.; Schwartz, D.; Huntington, J. (Eds.) “Exobiology in solar system exploration. NASA”, 1988.

    Google Scholar 

  • Cech, T. R. “The chemistry of self-splicing RNA and RNA enzymes”. Science 1987, 236, 1532–1539.

    Article  Google Scholar 

  • Cech, T. R.; Zaug, A. J.; Grabowsky, P. J. “In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 1981, 27, 487–496.

    Article  Google Scholar 

  • Chyba, C. F.; Sagan, C. “Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life”. Nature 1992, 355, 125–132.

    Article  Google Scholar 

  • Chyba, C. F.; Thomas, P. J.; Brookshaw, L.; Sagan, C. “Cometary delivery of organic molecules to the early Earth”. Science 1990, 249, 366–373.

    Article  Google Scholar 

  • Corliss, J. B.; Baross, J. A.; Hoffman, S. E. “Submarine hydrothermal systems: a probable site for the origin of life”. Oceanol. Acta 1981, 4, suppl., 59–69.

    Google Scholar 

  • Cronin, J. R.; Pizzarello, S. « Enantiomeric excess in meteoritic amino acids ». Science 1997, 275, 951–955.

    Article  Google Scholar 

  • Decker, P.; Schweer, H.; Pohlmann, R. “BIOIDS, X: Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography / gas chromatography-mass spectrometry of n-butoxime trifluoroacetates on OV-225”. J. Chromatogr 1982, 244, 281–291.

    Article  Google Scholar 

  • Décout, J.-L.; Maurel, M.-C. “N 6-substituted adenine derivatives and RNA primitive catalysts”. Origins Life Evol. Biosphere 1993, 23, 298–306.

    Google Scholar 

  • Décout, J.-L.; Vergne, J.; Maurel, M.-C. “Synthesis and catalytic activity of adenine containing polyamines”. Macromol Chem. Phys. 1995, 196, 2615–2624.

    Article  Google Scholar 

  • de Duve, C. R. “Blueprint for a cell. The nature and origin of life”. Neil Patterson Publishers, Burlington, North Carolina, 1991.

    Google Scholar 

  • de Duve, C. R. “Vital dust. Life as a cosmic imperative”. Basic Books, HarperCollins Publishers, New York, 1995.

    Google Scholar 

  • Doudna, J. A.; Szostak, J. W. “RNA catalysed synthesis of complementary strand RNA”. Nature 1989, 339, 519–522.

    Article  Google Scholar 

  • Egholm, M.; Buchardt, O.; Nielsen P. E.; Berg, R. H. “Oligonucleotide analogues with an achiral peptide backbone”. J. Am. Chem Soc. 1992, 114, 1895–1897.

    Article  Google Scholar 

  • Engel, M. H.; Macko, S.A. ”Isotopic evidence for extraterrestrial non-racemic amino acids in the Murchison meteorite. Nature 1997, 389, 265–268 (Comments Chyba C. pp. 234-235)

    Article  Google Scholar 

  • Eschenmoser, A.; Loewenthal, E. “Chemistry of potentially prebiological natural products”. Chem. Soc. Rev. 1992, 1–16.

    Google Scholar 

  • Ferris, J. P. “The chemistry of life’s origin”. Chem. Eng. News 1991, 62, 22–35.

    Google Scholar 

  • Ferris, J. P.; Ertem, G.; Agrawal, V. K. “The adsorption of nucleotides and polynucleotides on montmorillonite clay”. Origins Life Evol. Biosphere 1989, 19, 153–164.

    Article  Google Scholar 

  • Ferris, J. P.; Hagan, W. J. “HCN in chemical evolution: the possible role of cyano compounds in prebiotic synthesis”. Tetrahedron 1984, 40, 1093–1120.

    Article  Google Scholar 

  • Ferris, J. P.; Hill, A. R.; Liu, R.; Orgel, L. E. “Synthesis of long prebiotic oligomers on mineral surfaces”. Nature 1996, 381, 59–61.

    Article  Google Scholar 

  • Ferris, J. P.; Orgel, L. E. “An unusual photochemical rearrangement in the synthesis of adenine from hydrogen cyanide”. J. Am. Chem Soc. 1966, 88, 1074–1074.

    Article  Google Scholar 

  • Fredrickson, J.K; Onstott, T.C. ”Microbes deep inside the Earth”. Scientific American. 1996, 68–73.

    Google Scholar 

  • Gesteland, R. F.; Atkins, J. F. (Eds.) “The RNA World”. Cold Spring Harbor Laboratory Press, 1993.

    Google Scholar 

  • Gilbert, W. “The RNA World”. Nature 1986, 319, 618–618.

    Article  Google Scholar 

  • Gold, L.; Polisky, B.; Uhlenbeck, O.; Yarus, M. “Diversity of oligonucleotide functions”. Annu. Rev. Biochem. 1995, 64, 763–797.

    Article  Google Scholar 

  • Hartman, H. “Speculations on the origin and evolution of metabolism”. J. Mol Evol. 1975, 4, 359–370.

    Article  Google Scholar 

  • Hochachka, P.W.; Somero, G.N. “Biochemical adaptations”. Princeton University Press, Princeton, NJ. 1984.

    Google Scholar 

  • Huber, C.; Wächterhäuser, G. “Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions”. Science 1997, 276, 245–247.

    Article  Google Scholar 

  • Illangasekare, M.; Sanchez, G.; Nickles, T.; Yarus, M. “Aminoacyl-RNA synthesis catalyzed by an RNA”. Science 1995, 267, 643–647.

    Article  Google Scholar 

  • Jaeger, L. “The new World of ribozymes”. Current Opinion Struct. Biol. 1997, 7, 324–335.

    Article  Google Scholar 

  • Joshi, P. C.; Pathak, H. D. “Formation of aminoacids and nucleic acid constituents under possible primitive earth conditions”. J. Brit. Interpl. Soc. 1975, 28, 90–96.

    Google Scholar 

  • Joyce, G. F. “RNA evolution and the origins of life”. Nature 1989, 338, 217–224.

    Article  Google Scholar 

  • Joyce, G. F.; Schwartz, A. W.; Miller, S. L.; Orgel, L. E. “The case for an ancestral genetic system involving simple analogues of the nucleotides”. Proc. Nati. Acad. Sci. USA 1987, 84, 4398–4402.

    Article  Google Scholar 

  • Kagan, H. B.; Balavoine, G.; Moradpour, A. « Can circularly polarized light be used to obtain chiral compounds of high optical purity ». J. Mol. Evol. 1974, 4, 41–48.

    Article  Google Scholar 

  • Kasting, J. F. “Earth’s early atmosphere”. Science 1993, 259, 920–926.

    Article  Google Scholar 

  • Larralde, R.; Robertson, M. P.; Miller, S. L. “Rates of decomposition of ribose and other sugars: implications for chemical evolution”. Proc. Natl. Acad. Sci. USA 1995, 92, 8158–8160.

    Article  Google Scholar 

  • Lazcano, A.; Guerrero, R.; Margulis, L.; Orò, J. “The evolutionary transition from RNA to DNA in early cells”. J. Mol. Evol. 1988, 27, 283–290.

    Article  Google Scholar 

  • Lehman, N.; Joyce, G. F. “Evolution in vitro: analysis of a lineage of ribozymes”. Current Biology 1993, 3, 723–734.

    Article  Google Scholar 

  • Lipmann, F. “Attempts to map a process evolution of peptide biosynthesis” Science 1971, 173, 875–884.

    Article  Google Scholar 

  • Liu, R.; Orgel, L. E. “Oxidative acylation using thioacids”. Nature 1997, 389, 52–54.

    Article  Google Scholar 

  • Lorsch, J. R.; Szostak, J. W. “Chance and necessity in the selection of nucleic acid catalysts”. Acc. Chem. Res. 1996, 29, 103–110.

    Article  Google Scholar 

  • Maurel, M.-C.; Ninio, J. “Catalysis by a prebiotic nucleotide analog of histidine”. Biochimie 1987, 69, 551–553.

    Article  Google Scholar 

  • Maurel, M.-C. “RNA in Evolution: A review”. J. EvoL Biol. 1992, 5, 173–188

    Article  Google Scholar 

  • Maurel, M.-C.; Convert, O. “Chemical structure of a prebiotic analog of adenosine”. Origins Life EvoL Biosphere 1990, 20, 43–48.

    Article  Google Scholar 

  • Maurel, M.-C.; Décout, J.-L. “Studies of nucleic acid-like polymers as catalysts”. J. Mol Evol. 1992, 35, 190–195.

    Article  Google Scholar 

  • Maurel, M.-C.; Vergne, J.; Drahi, B.; Décout, J.-L. “Implications of adenine in primitive catalysis and exobiology”. Proc. Sixth Eur. Symp. on Life Sciences Research in Space, ESA SP-390, 1997, 177–181.

    Google Scholar 

  • Maurel M.-C.; Décout, J.-L. “Origins of life: Molecular foundations and new approaches” Tetrahedron Rep, in press, 1998.

    Google Scholar 

  • Maurette, M.; Jéhanno, C.; Robin, E.; Hammer, C. “Characteristics and mass distribution of extraterrestrial dust from the Greenland ice cap”. Nature 1987, 328, 699–702.

    Article  Google Scholar 

  • Miller, S. L. “A production of amino acids under possible primitive earth conditions”. Science 1953, 117, 528–529.

    Article  Google Scholar 

  • Miller, S. L. “Production of some organic compounds under possible primitive earth conditions”. J. Am. Chem. Soc. 1955, 77, 2351–2361.

    Article  Google Scholar 

  • Mojzsis, S. J.; Arrhenius, G.; McKeegan, K. D.; Harrison, T. M.; Nutman, A. P.; Friend, C R. L. “Evidence for life on Earth before 3,800 million years ago”. Nature 1996, 384, 55–59.

    Article  Google Scholar 

  • Morowitz, H. J. “Beginning of cellular life”. Yale University Press (Ed.), New Haven, 1992.

    Google Scholar 

  • Nielsen, P. E.; Egholm M.; Berg, R. H.; Buchardt, O. “Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide”. Science 1991, 254, 1497–1500.

    Article  Google Scholar 

  • Oparin, A. I. “The origin of life”. McMillan Publishing, New-York, 1938.

    Google Scholar 

  • Orgel, L. E. “Evolution of the genetic apparatus”. J. MoL Biol. 1968, 38, 381–393.

    Article  Google Scholar 

  • Orgel, L. E. “RNA catalysis and the origins of life”. J. Theor. Biol. 1986, 123, 127–149.

    Article  Google Scholar 

  • Orgel, L. E. “Evolution of the genetic apparatus: a review”. Cold Spring Harbor Symp. Quant. Biol. 1987, 52, 9–16.

    Article  Google Scholar 

  • Orgel, L. E. “Was RNA the first genetic polymer?”. In Grunberg-Manago M.; Claik B. F. C.; Zachau H.G. (Eds.). “Evolutionary thinkering in gene expression”. Plenum Press, New York, 1989, pp 215–224.

    Chapter  Google Scholar 

  • Orgel, L. E. “Molecular replication”. Nature 1992, 358, 203–209.

    Article  Google Scholar 

  • Orgel, L. E.; Lohrmann, R. “Prebiotic chemistry and nucleic acid replication”. Acc. Chem. Res. 1974, 7, 368–377.

    Article  Google Scholar 

  • Orò, J. “Synthesis of adenine from ammonium cyanide”. Biochem. Biophys. Res. Comm. 1960, 2, 407–412.

    Article  Google Scholar 

  • Orò, J. “Stages and mechanisms of prebiological organic synthesis”. In Fox, S.W. (Ed.), “The origin of prebiological systems and their molecular matrices”. Academic press., New York, 1965, pp. 137–161.

    Google Scholar 

  • Orò, J.; Kimball, A. P. “Synthesis of purines under possible primitive earth conditions, I. Adenine from hydrogen cyanide”. Arch. Biochem. Biophys. 1961, 94, 217–227.

    Article  Google Scholar 

  • Osborne, S. E.; Ellington, A. D. “Nucleic acid selection and the challenge of combinatorial chemistry”. Chem. Rev. 1997, 97, 349–370.

    Article  Google Scholar 

  • Paecht-Horowitz, M. “Clay catalysed polymerization of amino acid adenylates and its relationship to biochemical reactions”. Origins Life Evol. Biosphere 1978, 9, 289–295.

    Google Scholar 

  • Paecht-Horowitz, M.; Berger, J.; Katchalsky, A. “Prebiotic synthesis of polypeptides by heterogeneous polycondensation of aminoacids adenylates”. Nature 1970, 228, 636–641.

    Article  Google Scholar 

  • Picirilli, J. A.; Mc Connell, T. S.; Zaug, A. J.; Noller, H. F.; Cech, T. R. “Aminoacyl esterase activity of the Tetrahymena ribozyme”. Science 1992, 256, 1420–1424.

    Article  Google Scholar 

  • Pyle, A. M. “Ribozymes: a distinct class of metalloenzymes”. Science 1993, 261, 709–714.

    Article  Google Scholar 

  • Reichard, P. “From RNA to DNA, why so many ribonucleotide reductases?”. Science 1993, 260, 1773–1777.

    Article  Google Scholar 

  • Ricard, J.; Vergne, J.; Décout, J.-L.; Maurel, M.-C. “The origin of kinetic co-operativity in prebiotic catalysts”. J. Mol Evol. 1996, 43, 315–325.

    Article  Google Scholar 

  • Robertson, M. P.; Miller, S. L. “An efficient prebiotic synthesis of cytosine and uracil”. Nature 1995, 375, 772–774.

    Article  Google Scholar 

  • Samaha, R. S.; Green, R.; Noller, H. F. “A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome”. Nature 1995, 377, 309–314.

    Article  Google Scholar 

  • Schrödinger, E. “What is life?”. Cambridge University Press, Cambridge, 1944.

    Google Scholar 

  • Schopf, J. W. (Ed.) “Earth’s earliest biosphere: its origin and evolution”. Princeton University Press, Princeton, 1983.

    Google Scholar 

  • Schopf, J. W.; Packer, B. M. “Early archaen (3.3 billion to 3.5 billion-year-old) microfossils from Warrawoona group, Australia”. Science 1987, 237, 70–73.

    Article  Google Scholar 

  • Spach, G. “Chiral versus chemical evolution and the appearance of life”. Origins of life Evol. Biosphere 1984, 14, 433–437.

    Article  Google Scholar 

  • Tarasow, T. M.; Tarasow, S. L.; Eaton, B. E. “RNA-catalysed carbon-carbon bond formation” Nature 1997, 389, 54–57.

    Article  Google Scholar 

  • Wächtershäuser, G. “Before enzymes and templates: Theory of surface metabolism”. Microbiol. Rev. 1988, 52, 452–484.

    Google Scholar 

  • Wächtershäuser, G. An all-purine precursor of nucleic acids. Proc. Natl. Acad. Sci USA. 1988, 85, 1134–1135.

    Article  Google Scholar 

  • Walker JCG(1978) Oxygen and hydrogen in the primitive atmosphere. Pure Appl Geophys 116: 222–231

    Google Scholar 

  • Walker J.C.G, Kein C., Schidlowski M., Schopf JW, Stevenson DJ and Walter MR 1983, Environmental evolution of the Archean-Proterozoic earth. In Schopf JW (ed) Earth’s Earliest Biosphere, pp 260–290. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Walker, J. C. G. “Carbon dioxide on the early Earth”. Origins of Life 1985, 16, 117–127.

    Article  Google Scholar 

  • Weismann, A. “Essais sur l’hérédité et la sélection naturelle”, traduction française par Henry de Varigny, Reinwald et Cie, Paris 1892.

    Google Scholar 

  • White, D. H.; Erickson, J. C. “Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment”. J. Mol Evol. 1980, 16, 279–290.

    Article  Google Scholar 

  • Wieland, T. “Sulfur in biomimetic peptide syntheses”. Wieland, T. (Ed). de Gruyter W., Berlin, New York, 1988, pp 213–221.

    Google Scholar 

  • Woese, C. “The universal ancestor”. Proc. Natl Acad. Sci. USA. 1998, 95, 6854–6859.

    Article  Google Scholar 

  • Zhang, B.; Cech, T. R. “Peptide bond formation by in vitro selected ribozymes”. Nature 1997, 390, 96–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maurel, MC. (1999). Biological Foundations of Life. In: Mariotti, JM., Alloin, D. (eds) Planets Outside the Solar System: Theory and Observations. NATO Science Series, vol 532. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4623-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4623-4_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5709-4

  • Online ISBN: 978-94-011-4623-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics