Skip to main content

Applications of NMR Spectroscopy to the Study of the Bound Conformation of O- and C-Glycosides to Lectins and Enzymes

  • Chapter
Book cover NMR in Supramolecular Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 526))

  • 445 Accesses

Abstract

TR-NOE experiments have been used to characterise the bound conformation of oligosaccharide and synthetic analogues to different carbohydrate binding proteins. In particular, the bioactive conformations of lactose, C-lactose, and N-acetyl glucosamine-containing oligosaccharides when bound to Ricin, E. coli β-galactosidase and hevein is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dwek, R.A. (1996) Chem. Rev. Glycobiology, 96, 683–710. Gabius H. J. and Gabius S. (1996) Glycosciences, status and perspectives, Chapman and Hall, GmbH Weinheim.

    CAS  Google Scholar 

  2. Weis W.I. and Drickamer, K. (1996) Structural basis of lectin-carbohydrate recognition, Ann. Rev. Biochem. 65, 441.

    Article  CAS  Google Scholar 

  3. Toone, E. (1994) Structure and energetics of protein-carbohydrate complexes, Curr. Opin. Struct. Biol., 4, 719–725, and references therein.

    Article  CAS  Google Scholar 

  4. Poveda, A. and Jiménez-Barbero, J. (1998) NMR studies of carbohydrate-protein interactions in solution, Chem. Soc. Rev. 27, 133–143. and references therein

    Article  CAS  Google Scholar 

  5. Peters T. and Pinto, B. M. (1996) Structure and dynamics of oligosaccharides: NMR and modeling studies, Curr. Opin. Struct. Biol. 6, 710–716, and references therein.

    Article  CAS  Google Scholar 

  6. Ni, F. (1994) Recent developments in transferred NOE experiments, Prog. NMR Spectroscopy 26, 517–606.

    Article  CAS  Google Scholar 

  7. Arepalli, S.R. Glaudemans, C.P.J. Davis, D.G. Kovac, P., and Bax, A. (1995) Identification of protein-mediated indirect NOE effects in a disaccharide-Fab complex by TR-ROESY, J. Magn. Reson. B, 106, 195–198.

    Article  CAS  Google Scholar 

  8. Asensio, J.L., Cañada, F.J., and Jimenez-Barbero, J. (1995) Studies of the bound conformation of methyl α-lactoside and methyl β-allolactoside to ricin-B chain using transferred NOE experiment in the laboratory and the rotating frames, assisted by molecular mechanics and dynamics calculations, Eur. J. Biochem., 233, 618–630, and references therein.

    Article  CAS  Google Scholar 

  9. Bevilacqua, V.L:, Thomson, D.S., Prestegard, J.H. (1990) Conformation of methyl beta lactoside bound to the ricin B chain: interpretation of TR-NOE effects facilitated by sin simulation and selective deuteration, Biochemistry, 29, 5529–5537.

    Article  CAS  Google Scholar 

  10. Espinosa, J.F., Cañada, J., Asensio, J.L., Martín-Pastor, M., Dietrich, H.J., Schmidt, R.R., Martín-Lomas, M., and Jiménez-Barbero, J. (1996) Experimental evidence of conformational differences between C-glycosides and O-glycosides in solution and in the Protein-bound state: the C-lactose/O-lactose case, J. Am. Chem. Soc., 118, 10682–10691, and references therein.

    Google Scholar 

  11. Espinosa, J.F., Cañada, J., Asensio, J.L., Dietrich, H.J., Schmidt, R. R., Martín-Lomas, M., and Jiménez-Barbero, J. (1996) Conformational differences of O-and C-glycosides in the protein bound state: different conformation of C-lactose and its O-analogue are recognized by Ricin-B, a galactose-binding protein, Angew. Chem. Int. Ed. Engl., 35, 303–306.

    Article  CAS  Google Scholar 

  12. Sinnott, M.L. (1990) Catalytic mechanisms of enzymic glycosyl transfer, Chem. Rev. 90, 1171–1202.

    Article  CAS  Google Scholar 

  13. Huber, R.E., Gupta, M.N., and Khare, S.K. (1994) The active site and mechanism of the β-galactosidase from Escherichia coli. Int. J. Biochem. 26, 309–318.

    Article  CAS  Google Scholar 

  14. Jacobson, R.H., Zhang, X.-J., DuBose, R.F., and Matthews, B.W (1994) Threedimensional structure of β-galactosidase from E. coli, Nature 369, 761–766.

    Article  CAS  Google Scholar 

  15. Phillips, D.C. (1967) The hen egg-white lysozyme molecule, Proc. Natl. Acad. Sci. USA 57, 484–495.

    Article  CAS  Google Scholar 

  16. Legier, G. (1990) Glycoside hydrolases: Mechanistic information from studies with reversible and irreversible inhibitors, Adv. Carb. Chem. Biochem. 48, 319–385.

    Article  Google Scholar 

  17. McCarter, J.D. and Withers, S.G. (1994) Mechanism of enzymatic glycoside hydrolisis, Curr. Op. Str. Biol. 4, 885–892.

    Article  CAS  Google Scholar 

  18. Davies, G. and Henrissat, B.H. (1995) Structures and mechanisms of glycosyl hydrolases, Structure 3, 853–859.

    Article  CAS  Google Scholar 

  19. Huber, R.E. and Chivers, P.T. (1993) beta-Galactosidases of Escherichia coli with substitutions for Glu-461 can be activated by nucleophiles and can form beta-D-galactosyl adducts, Carbohydr Res 250, 9–18.

    Article  CAS  Google Scholar 

  20. Gebier, J.C., Aebersold, R., and Withers, S.G. (1992) Glu-537, not Glu-461 is the nucleophile in the active site of (lac Z) β-galactosidase from Escherichia col, J. Biol. Chem 267, 11126–11130.

    Google Scholar 

  21. Ring, M. and Huber, R.E. (1990) Multiple replacements establish the importance of tyrosine-503 in beta-galactosidase (Escherichia coli), Arch Biochem Biophys 283, 342–350.

    Article  CAS  Google Scholar 

  22. Richard, J.P., Huber, R.E., Heo, C., Amyes, T.L., and Lin, S. (1996) Structure-reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4. Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermediates of E461G and E461Q beta-galactosidases, Biochemistry 35, 12387–12401.

    Article  CAS  Google Scholar 

  23. Roth, N.J. and Huber, R.E. (1996) The β-galactosidase (Escherichia coli) reaction is partly facilitated by interaction of His-540 with the C6 hydroxyl of galactose, J. Biol. Chem. 271, 14296–14301.

    Article  CAS  Google Scholar 

  24. James, T.L. and Oppenheimer, N.J. (1994) Nuclear magnetic resonance. Part C. Methods in Enzymology 239, 1–813.

    Google Scholar 

  25. Jencks, W.P. (1975) Binding energy, specificity, and enzymic catalysis: the circe effect. Adv. Enzymol. 43, 219–410.

    CAS  Google Scholar 

  26. Lightstone, F.C. and Bruice, T.C. (1996) Ground state conformations and entropic and enthalpic factors in the efficiency of intramolecular and enzymatic reactions. 1. cyclic anhydride formation by substituted glutarates, succinate, and 3,6-endoxo-Δ4-tetrahydrophthalate monophenyl esters, J. Am. Chem. Soc 118, 2595–2605.

    Article  CAS  Google Scholar 

  27. Cannon, W.R., Singleton, S.F., and Benkovic, S.J. (1996) A perspective on biological catalysis, Nature Struct. Biol. 3, 821–833.

    Article  CAS  Google Scholar 

  28. Espinosa, J.F., Montero, E., Vian, A., García, J.L., Imberty, A., Dietrich, HJ., Schmidt, R.R., Martín-Lomas, M., Cañada, J., and Jiménez-Barbero, J. (1998) E. coli galactoside recognizes a high energy conformation of C-lactose, a non hydrolizable substrate analogue. NMR investigations of the molecular complex, J. Am. Chem. Soc., 120, 1309–1316.

    Article  CAS  Google Scholar 

  29. Huber, R.E., Kurz, G., and Wallenfels, K. (1976) A quantitation of the factors which affect the hydrolase and transgalactosylase activities of beta-galactosidase (E. coli) on lactose, Biochemistry 15, 1994–2001.

    Article  CAS  Google Scholar 

  30. Adelhorst, K. and Bock, K. (1992) Derivatives of methyl β-lactoside as substrates for and inhibitors of β-D-galactosidase from E. coli, Acta Chem. Scand. 46, 1114–1121.

    Article  CAS  Google Scholar 

  31. Hadfield, A.T., et al. (1994) Crystal structure of the mutant D52S Hen Egg White lysozyme with an Oligosaccharide product, J. Mol. Biol. 243, 856–872

    Article  CAS  Google Scholar 

  32. Kuroki, R., Weaver, L.H., and Matthews, B.W. (1993) A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme, Science 262, 2030–2033.

    Article  CAS  Google Scholar 

  33. Tews, I., et al. (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease, Nature Struct. Biol. 3, 638–648.

    Article  CAS  Google Scholar 

  34. Sulzenbacher, G., Driguez, H., Henrissat, B., Schülein, M., and Davies, G.J. (1996) Structure of the Fusarium oxysporum endoglucanasa I with a nonhydrolyzable substrate analogue: Substrate distortion gives rise to the preferred axial orientation for the leaving group, Biochemistry 35, 15280–15287

    Article  CAS  Google Scholar 

  35. Casset, F., Peters, T. Etzler, M., Korchagina, E., Nifant’ev, N., Perez, S., and Imberty, A. (1996) Conformational analysis in blood group A trisaccharide in solution and in the binding site of Dolichos biflorus lectin using transient and transferred NOE and rotating-frame NOE experiments, Eur. J. Biochem., 239, 710–719.

    Article  CAS  Google Scholar 

  36. Siebert, H. C., Guilleron, M., Kaltner, H., Von der Lieth, C. W., Kozar, T., Bovin, N., Korchagina, E. Y, Vliegenthart, J. F. G., and Gabius, H. J. (1996) NMR-based, molecular dynamics and random walk molecular mechanics-supported study of confoemational aspects of a carbohydrate ligand (Gal beta 1-2Gal beta 1-R) for an animal galectin in the free and in the bound state, Biochem. Biophys. Res. Comm., 219, 205–212.

    Article  CAS  Google Scholar 

  37. Weimar, T. and Peters, T. (1994) Aleuria aurantia agglutinin recognizes multiple conformations of Fuc-(1->6)-GlcNAc-OMe, Angew. Chem. Int. Ed. Engl., 33, 88–91.

    Article  Google Scholar 

  38. Poppe, L., Brown, G.S., Philo, J.S., Nikrad, P.V., and Shah, B.H. (1997) Conformation of sLeX tetrasaccharide, free in solution and bound to E-, P-, and L-selectin, J. Am. Chem. Soc., 119, 1727–1736, and references therein.

    Article  CAS  Google Scholar 

  39. Bundle, D.R., Baumann, H., Brisson, J. R., Gagne, S., Zdanov, A., and Cygler, M. (1994) Structure of a trisaccharide-antibody complex: comparison of NMR measurements with a crystal structure, Biochemistry, 33, 5183–5192.

    Article  CAS  Google Scholar 

  40. Casset, F., Imberty, A., Perez, S., Etzler, M., Paulsen, H., Peters, T. (1997) Transfer NOEs and ROEs reflect the size and amino acid composition of the binding pocket of a lectin, Eur. J. Biochem 244, 242–251.

    Article  CAS  Google Scholar 

  41. Meyer, B., Weimar, T., and Peters, T. (1997) Screening mixtures for biological activity by NMR, Eur. J. Biochem., 246, 705–712.

    Article  CAS  Google Scholar 

  42. Andersen, N.H., Cao, B., Rodríguez-Romero, A., and Arreguin, B. (1993) Hevein: NMR assignment and assessment of solution-state folding for the agglutinin-toxin motif, Biochemistry. 32, 1407–1422.

    Article  CAS  Google Scholar 

  43. Asensio, J.L., Cañada, F.J., Bruix, M., Rodriguez-Romero, A., and Jimenez-Barbero, J. (1995) The interaction of Hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose, Eur. J. Biochem. 230, 621–633.

    Article  CAS  Google Scholar 

  44. Asensio, J.L., Cañada, F.J., Bruix, M., Rodriguez-Romero, A., Gonzalez, C., Khiar, N., and Jimenez-Barbero, J. (1998) The interaction of Hevein with N-acetylglucosamine-containing oligosaccharides. Solution structure of hevein complexed to chitobiose, Glycobiology. 8, 569–577.

    Article  CAS  Google Scholar 

  45. (a) Wright, C. S. (1984) Structural comparison of the two distinct sugar binding sites in wheat germ agglutinin isolectin II, J. Mol Biol 178, 91–104. (b) Wright, C. S. (1990) 2.2 Å resolution Structure Analysis of Two Refined N-acetyl-neuraminyl-lactose-wheat germ agglutinin isolectin complexes, J. Mol Biol. 215, 635-651. (c) Wright, C. S. (1992) Crystal structure of a wheat germ agglutinin/glycophorin-sialo-glycopeptide receptor complex. Structural basis for cooperative lectin-cell binding, J. Biol Chem. 267, 14345-14352.

    Article  Google Scholar 

  46. Martins, J., Maes, D., Loris, R., Pepermans, H. A. M., Wyns, L., Willen, R., Verheyden, P. (1996) 1H NMR study of the solution structure of Ac-AMP-2, a sugar binding antimicrobial protein isolated from Amaranthus caudatus, J. Mol. Biol., 258, 322–330.

    Article  CAS  Google Scholar 

  47. Rodriguez-Romero, A., Ravichandran, K. G., and Soriano-Garcia, M. (1991), Crystal structure of hevein at 2.8 Å resolution, Febs Lett. 291, 307–309.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jiménez-Barbero, J. et al. (1999). Applications of NMR Spectroscopy to the Study of the Bound Conformation of O- and C-Glycosides to Lectins and Enzymes. In: Pons, M. (eds) NMR in Supramolecular Chemistry. NATO ASI Series, vol 526. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4615-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4615-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5950-3

  • Online ISBN: 978-94-011-4615-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics