Skip to main content

Self-Assembling Peptide Nanotubes

  • Chapter
NMR in Supramolecular Chemistry

Part of the book series: NATO ASI Series ((ASIC,volume 526))

Abstract

There is great excitement about the possible application of nanosized structures since they may have novel material properties owing to their finite small size [1]. Innovative material-processing methods based on nanophysical or nanochemical techniques have revolutionized the design and manufacture of microscopic and submicroscopic devices [2]. For example, atomic-force and scanning tunnelling microscopy techniques, or self-organizing and self-assembling processes are being used for atomic- and molecular-scale manipulations. The goal is to construct structurally and functionally predetermined nanoscale objects by chemical processes from simple components. There is particular interest in the design of molecular scaffolding and container devices with well-defined nanoscopic cavities [3]. Much of this interest has fuelled research on nanotubes because of their potential utility in applications as diverse as molecular inclusion and separation technologies, catalysis, preparation of nanocomposites, construction of optical and electronic devices; and as novel therapeutic agents, transmembrane channels, and drug delivery vehicles. This has resulted in numerous reports of nanosized tube-shaped objects from different fields, including all-inorganic zeolites, all-carbon graphite nanotubes, lipid-based tubular assemblies, cyclodextrin-based materials, and a number of crown-ether based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Special section (1991) “Engineering a Small World” Science 254, 1300–1335

    Article  Google Scholar 

  2. Ozin, G. A. (1992) Nanochemistry synthesis in diminishing dimensions, Adv. Mater. 4, 612–649.

    Article  CAS  Google Scholar 

  3. Cram, D. J. (1992) Nature 356, 29–36; Wyler, R., de Mendoza, J., Rebek, J. (1993) A synthetic cavity assembles through self-complementary hydrogen bonds, Angew Chem. Int. Ed. Engl. 354, 1699-1701; T., Rebek, J. (1996) Assembly and encapsulation with self-complementary molecules, Chem. Soc. Rev., 25, 255-263.

    Article  CAS  Google Scholar 

  4. Early theoretical analysis predicted the formation of this type of cyclindrical structures: DeSantis, P., Morosetti, S., and Rizzo, R. (1974) Conformational analysis of regular enantiomeric sequences, Macromolecules 7, 52–58

    Article  CAS  Google Scholar 

  5. Ghadiri, M. R., Granja, J. R., Milligan, R. A., McRee, D. E., and Khazanovich, N. (1993) Self-assembling organic nanotubes based on a novel cyclic peptide architecture Nature 366, 324–3276

    Article  CAS  Google Scholar 

  6. Hartgerink, J., Granja, J. R., McRee, D. E., Milligan, R. A., and Ghadiri, M. R. (1996) Self-assembling peptide nanotubes, J. Am. Chem. Soc., 117, 43–50.

    Article  Google Scholar 

  7. Some other nanotubes have been recently prepared using Lys or Glu instead of Gln; Hartgerink, J., Ghadiri, M. R. unpublished results.

    Google Scholar 

  8. Khazanovich, N., Granja, J. R., Milligan, R. A., McRee, D. E., and Ghadiri, M. R. (1994) Nanoscopic tubular ensembles with specified internal diameters. Design of a self-assembled nanotube with a 13-Å pore, J. Am. Chem. Soc., 1994, 116, 6011–6012

    Article  Google Scholar 

  9. a) Ghadiri, M. R., Kobayashi, K., Granja, J. R., Chadha, R. K., and McRee D. E. (1995) The structural and thermodynamic basis for the formation of self-assembled peptide nanotubes, Angew. Chem. Int. Ed. Engl., 34, 93–95. b) Clark, T.D., Buriak, J.M., Kobayashi, K., Isler, M.P., McRee, D.E., Ghadiri, M.R. (1998) Cylindrical β-sheet peptide assemblies, J. Am. Chem. Soc., 120, 8949-8962.

    Article  Google Scholar 

  10. Kobayashi, K., Granja, J. R., and Ghadiri, M. R. (1995) β-sheet peptide architecture: measuring the relative stability of parallel vs. antiparallel β-sheets, Angew. Chem. Int. Ed. Engl., 34, 95–98.

    Article  CAS  Google Scholar 

  11. Ghadiri, M. R., Granja, J. R., and Buehler, L. K. (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes, Nature, 369, 301–304.

    Article  CAS  Google Scholar 

  12. Recentely these and other nanotubes formed across phosphatidylcholine (PC) bilayers have been shown to align parallel to the PC hydrocarbon chains. See: Kim H. S., Hartgerink, J. D., Ghadiri, M. R. (1998) Oriented self-assembly of cyclic peptides nanotubes in lipid membranes, J. Am. Chem. Soc., 120, 4417–4424.

    Article  Google Scholar 

  13. a) These transmembrane channels can very efficiently transport Li, Na, K, Cs and Clions, Ghadiri, M. R.; Granja, J. R.; and Buehler, L. K., unpublished results, b) For a study of a transport of different ions see: Motesharei, K., Ghadiri, M. R. (1997) Diffusion-limited size selective ion sensing based on SAM-supported peptide nanotubes, J. Am. Chem. Soc., 119, 11306–11312.

    Article  Google Scholar 

  14. Granja, J. R., and Ghadiri, M. R. (1994) Channel-mediated transport of glucose across lipid bilayers, J. Am. Chem. Soc., 116, 10785–10786.

    Article  CAS  Google Scholar 

  15. Recently it has been shown that cyclic tetramers of β-amino acids can form similar hollow tubular stuctures, and that hydrophobic decorated cyclopeptides can form transmembrane ion channels with a central hole 2.6-2.7 Å in diameter. Clark, T.D., Buehler, L. K., and Ghadiri, M. R. (1998) Self-assembling cyclic β3-peptide nanotubes as artificial transmembrane ion channel, J. Am. Chem. Soc., 120, 651–656.

    Article  CAS  Google Scholar 

  16. These channels are antibacterially active against gram-positive strains and cytotoxic in a test with human kidney cells. Ghadiri, M. R. unpublished results.

    Google Scholar 

  17. Clark, T.D. and Ghadiri, M. R. (1995) Supramolecular design by covalent capture. Design of a peptide cylinder via hydrogen-bond-promoted intermolecular olefin metathesis, J. Am. Chem. Soc., 117, 12364–12365.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Granja, J.R., Ghadiri, M.R. (1999). Self-Assembling Peptide Nanotubes. In: Pons, M. (eds) NMR in Supramolecular Chemistry. NATO ASI Series, vol 526. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4615-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4615-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5950-3

  • Online ISBN: 978-94-011-4615-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics