Skip to main content

Elucidating Complex Charge Density Wave Structures in Low-Dimensional Materials by Scanning Tunneling Microscopy

  • Chapter
  • 286 Accesses

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 22))

Abstract

An important goal of condensed matter research is to understand how microscopic or atomic level structural and electronic characteristics of a solid determine observable properties like superconductivity and magnetism. This goal is motivated by the recognition that such an understanding will enable scientists ultimately to design rationally bulk solids and nanostructures having predictable properties. Instrumental methodologies that provide a real-space picture of the connectivity of atoms in a solid and/or the local electronic structure are perhaps most appealing since they can probe materials directly in the space (real vs. reciprocal) that we often think, and can directly characterize defects and disorder that play significant roles in determining the properties of solids. Furthermore, real-space probes are required to assess the intrinsic structural and electronic properties of very small material structures that are a focus of the burgeoning area of nanotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett., 49, 57 (1982).

    ADS  Google Scholar 

  2. G. Binnig and H. Rohrer, Sci. Am., August, 50 (1985).

    Google Scholar 

  3. C.F. Quate, Phys. Today, 39, 26 (1986).

    Google Scholar 

  4. H.J. Guntherodt and R. Wiesendanger, Eds., Scanning Tunneling Microscopy, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  5. C.J. Chen, Introduction to Scanning Tunneling Microscopy, Oxford University Press, New York, 1993.

    Google Scholar 

  6. P. K. Hansma and J. Tersoff, J. Appl. Phys, 61, R1 (1987).

    ADS  Google Scholar 

  7. Y. Kuk and P. J. Silverman, Rev. Sci. Instru., 60, 165 (1989).

    ADS  Google Scholar 

  8. J. E. Griffith and G. P. Kochanski, Annu. Rev. Mater. Sci., 20, 194 (1990).

    Google Scholar 

  9. P. Avouris, J. Phys. Chem., 94, 2246 (1990).

    Google Scholar 

  10. R.V. Coleman, B. Giambattista, P.K. Hansma, A. Johnson, W.W. McNairy, and C.G. Slough, Adv. Phys., 37, 559 (1988).

    ADS  Google Scholar 

  11. C.M. Lieber, J. Liu, and P.E. Sheehan, Angew. Chem. Int. Ed. Engl., 35, 687 (1996).

    Google Scholar 

  12. C.M. Lieber, C&EN News, April 18, 28 (1994).

    Google Scholar 

  13. X.L. Wu and C.M. Lieber, Progress in Inorganic Chemistry, S. J. Lippard, Ed., John Wiley & Sons, Inc, New York, 1991.

    Google Scholar 

  14. C.M. Lieber and X.L. Wu, Acc. Chem. Res., 24, 170 (1991).

    Google Scholar 

  15. H. Dai and C.M. Lieber, Annu. Rev. Phys. Chem., 44, 237 (1993).

    ADS  Google Scholar 

  16. Q. Zhong, D. Inniss, K. Kjoller, and V.B. Elings, Surf. Sci. Lett., 290, L688 (1993).

    Google Scholar 

  17. M.T. Beal-Monod, C. Bourbonnais, and V.J. Emery, Phys. Rev. B, 34, 7716 (1986).

    ADS  Google Scholar 

  18. G. Binnig, C.F. Quate, and C. Gerber, Phy. Rev. Lett., 56, 930 (1986).

    ADS  Google Scholar 

  19. R.J. Colton and J.S. Murday, Naval Res. Rev., 3, 2 (1988).

    Google Scholar 

  20. P.K. Hansma, V.B. Elings, O. Marti, and C.E. Braker, Science, 242, 209 (1988).

    ADS  Google Scholar 

  21. C.F. Quate, Surface Science, 299/300, 980 (1994).

    ADS  Google Scholar 

  22. J.P. Spatz, S. Sheiko, M. Moller, R.G. Winkler, P. Reineker, and O. Marti, Nanotechnology, 6, 40 (1995).

    ADS  Google Scholar 

  23. S. Yoon, H. Dai, J. Liu, and C.M. Lieber, Science, 265, 215 (1994).

    ADS  Google Scholar 

  24. J. Frommer, Angew. Chem. Int. Ed. Engl., 31, 1298 (1992).

    Google Scholar 

  25. D. Rugar and P. Hansma, Physics Today, October, 23 (1990).

    Google Scholar 

  26. P.E. Sheehan and C.M. Lieber, Science, 272, 1158 (1996).

    ADS  Google Scholar 

  27. M.F. Crommie, C.P. Lutz, and D.M. Eigler, Science, 262, 218 (1993).

    ADS  Google Scholar 

  28. P. Avouris, Acc. Chem. Res., 28, 95 (1995).

    Google Scholar 

  29. J. A. Stroscio and D.M. Eigler, Science, 254, 1319 (1991).

    ADS  Google Scholar 

  30. P. Avouris, Acc. Chem. Res., 27, 159 (1994).

    Google Scholar 

  31. J.C. Patrin and J.H. Weaver, Phys. Rev. B, 49, 17913 (1993).

    ADS  Google Scholar 

  32. D. Rioux, R.J. Pechman, M. Chander, and J.H. Weaver, Phys. Rev. B, 50, 4430 (1994).

    ADS  Google Scholar 

  33. K. Koguchi, T. Matsumoto, and T. Kawai, Science, 267, 71 (1995).

    ADS  Google Scholar 

  34. M. Kanai, T. Kanai, K. Motui, X.D. Wang, T. Hashizume, and T. Sakurai, Surface Science, 326, L619 (1995).

    Google Scholar 

  35. F.J. DiSalvo and T.M. Rice, Physics Today, April, 23 (1979).

    Google Scholar 

  36. D.M. Ginsburg, Physical Properties of High Temperature Superconductors, World Scientific, Singapore, 1989.

    Google Scholar 

  37. H.F. Hess, Methods of Experimental Physics, Academic Press, Inc., New York, 1993.

    Google Scholar 

  38. H.F. Hess, R.B. Robinson, and J.V. Waszczak, Phys. Rev. Lett., 64, 2711 (1990).

    ADS  Google Scholar 

  39. H.F. Hess, R.B. Robinson, R.C. Dynes, J.M. Valles, and J.V. Waszczak, Phys. Rev. Lett., 62, 214 (1989).

    ADS  Google Scholar 

  40. G. Binnig and H. Rohrer, Angew. Chem. Int. Ed. Engl., 26, 606 (1987).

    Google Scholar 

  41. R.J. Hamers, Annu. Rev. Phys. Chem., 40, 351 (1989).

    Google Scholar 

  42. J. Tersoff and D.R. Hamann, Phys. Rev. B., 31, 805 (1985).

    ADS  Google Scholar 

  43. J. Tersoff, Phys. Rev. B, 41, 1235 (1990).

    ADS  Google Scholar 

  44. N.D. Lang, Phys. Rev. Lett., 56, 1164 (1986).

    ADS  Google Scholar 

  45. A. Selloni, P. Caenevalli, P.E. Tosatti, and C.D. Chen, Phys. Rev. B, 33, 5770 (1986).

    Google Scholar 

  46. C.J. Chen, Phys. Rev. Lett., 65, 448 (1990).

    ADS  Google Scholar 

  47. J. Bardeen, Phys. Rev. Lett., 6, 57 (1963).

    ADS  Google Scholar 

  48. S. Kagoshima, H. Nagasawa, and T. Sambongi, One-Dimensional Conductors, Springer-Verlag, New York, 1985.

    Google Scholar 

  49. R.E. Thorne, Physics Today, May, 42 (1996).

    Google Scholar 

  50. Electronic Properties of Inorganic Quasi-One-Dimensional Compounds, Ed. P. Monceau, Reidel, Boston, 1985.

    Google Scholar 

  51. Low-Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, Kluwer, Dordrecht, 1989.

    Google Scholar 

  52. P. Monceau, N.P. Ong, and A.M. Portis, Phys. Rev. Lett., 37, 602 (1976).

    ADS  Google Scholar 

  53. N. Shima and H. Kamimura, Theoretical Aspects of Band Structure and Electronic Properties of Pseudo-One-Dimensional Solids, Reidel, Boston, 1985.

    Google Scholar 

  54. R.M. Fleming, D.E. Moncton, and D.B. McWhan, Phys. Rev. B, 18, 5560 (1978).

    ADS  Google Scholar 

  55. G. Gruner, Rev. Mod. Phys, 60, 1129 (1988).

    ADS  Google Scholar 

  56. J. McCarten, D.A. Dicarlo, M.P. Maher, T.L. Adelman, and R.E. Thorne, Phys. Rev. B, 46, 4456 (1992).

    ADS  Google Scholar 

  57. G. Gruner and A. Zettl, Phys. Rep., 119, 117 (1985).

    ADS  Google Scholar 

  58. L.P. Gorkov and G. Gruner, Charge-Density Waves in Solids, North-Holland, Amsterdam, 1989.

    Google Scholar 

  59. D. Jerome, Low-Dimensional Conductors and Superconductors, Vol. 155, Plenum, 1987.

    Google Scholar 

  60. S. van Smaalen, J.L. DeBoer, P. Coppen, and H. Graafsma, Phys. Rev. Lett., 67, 1471 (1991).

    ADS  Google Scholar 

  61. S. van Smaalen, J.L. DeBoer, A. Meersma, H. Graafsma, H.S. Sheu, A. Darovskikh, and P. Coppens, Phys. Rev. B, 45, 3103 (1992).

    ADS  Google Scholar 

  62. J.H. Ross, Z. Wang, and C.P. Schlichter, Phys. Rev. Lett., 56, 633 (1986).

    ADS  Google Scholar 

  63. Z. Dai, C.G. Slough, and R. V. Coleman, Phys. Rev. Lett., 67, 1472 (1991).

    ADS  Google Scholar 

  64. C.G. Slough, W.W. McNairy, R.V. Coleman, J. Garnaes, C.B. Prater, and P.K. Hansma, Phys. Rev. B, 42, 9255 (1990).

    ADS  Google Scholar 

  65. C.G. Slough and R.V. Coleman, Phys. Rev. B, 40, 8042 (1989).

    ADS  Google Scholar 

  66. C.G. Slough, B. Giambattista, A. Johnson, W.W. McNairy, and R.V. Coleman, Phys. Rev. B, 39, 5496 (1989).

    ADS  Google Scholar 

  67. J. Ren and M.H. Whangbo, Phys. Rev. B, 46, 4917 (1992).

    ADS  Google Scholar 

  68. R.M.A. Leith and J.C. Terhell, Preparation and Crystal Growth of Materials with Layered Structures, Reidel, Dordretch, 1977.

    Google Scholar 

  69. J.A. Wilson, F.J. DiSalvo, and S. Mahajan, Adv. Phys., 24, 117 (1975).

    ADS  Google Scholar 

  70. F.J. DiSalvo, J.A. Wilson, B.G. Bagley, and J.V. Waszczak, Phys. Rev. B, 12, 2220 (1975).

    ADS  Google Scholar 

  71. R.L. Withers and J.A. Wilson, J. Phys. C: Solid State Phys., 19, 4809 (1986).

    ADS  Google Scholar 

  72. K. Nakanishi, H. Takatera, Y. Yamada, and H. Shiba, J. Phys. Soc. Jpn., 43, 1509 (1977).

    ADS  Google Scholar 

  73. K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn., 43, 1839 (1977).

    ADS  Google Scholar 

  74. R.V. Coleman, B. Drake, P.K. Hansma, and C.G. Slough, Phys. Rev. Lett., 55, 394 (1985).

    ADS  Google Scholar 

  75. X.L. Wu and C.M. Lieber, Science, 243, 1703 (1989).

    ADS  Google Scholar 

  76. X.L. Wu and C.M. Lieber, Phys. Rev. Lett., 64, 1150 (1990).

    ADS  Google Scholar 

  77. R.E. Thomson, U. Walter, E. Ganz, J. Clark, and A. Zettle, Phys. Rev. B, 38, 10734 (1988).

    ADS  Google Scholar 

  78. B. Giambattista, C.G. Slough, W.W. McNairy, and R.V. Coleman, Phys. Rev. B, 41, 10082 (1990).

    ADS  Google Scholar 

  79. F. J. DiSalvo, Science, 247, 649 (1992).

    ADS  Google Scholar 

  80. Physics Through 1990’s: Condensed Matter Physics, Natl. Acad. Press,, Washington, 1986.

    Google Scholar 

  81. Z. Zhang,, Harvard University, 1993.

    Google Scholar 

  82. A.K. Cheetham and P. Day, Solid State Chemistry: Techniques, Clarendon, Oxford, 1987.

    Google Scholar 

  83. X.L. Wu, Y. Wang, Z. Zhang, J. Huang, and C.M. Lieber, Science, 248, 1211 (1990).

    ADS  Google Scholar 

  84. H. Fukuyama and P.A. Lee, Phys. Rev. B, 17, 535 (1978).

    ADS  Google Scholar 

  85. P.A. Lee and T.M. Rice, Phys. Rev. B, 19, 3970 (1979).

    ADS  Google Scholar 

  86. H. Frohlich, Proc. Roy. Soc. A., 223, 296 (1954).

    ADS  Google Scholar 

  87. W.L. McMillan, Phys. Rev. B., 12, 1187 (1975).

    ADS  Google Scholar 

  88. H. Matsukawa and H. Takayama, J. Phys. Soc. Japan, 56, 1507 (1987).

    ADS  Google Scholar 

  89. Y. Imry and S.-K. Ma, Phys. Rev. Lett., 35, 1399 (1975).

    ADS  Google Scholar 

  90. F.R.N. Nabarro, Theory of Dislocations, Dover, New York, 1967.

    Google Scholar 

  91. S.N. Coppersmith, Phys. Rev. Lett., 65, 1044 (1990).

    ADS  Google Scholar 

  92. H. Dai, H.-F. Chen, and C.M. Lieber, Phys. Rev. Lett., 66, 3183 (1991).

    ADS  Google Scholar 

  93. H. Dai and C.M. Lieber, Phys. Rev. Lett., 69, 1576 (1992).

    ADS  Google Scholar 

  94. D.R. Nelson, M. Rubinstein, and F. Spapen, Philos. Mag. A., 46, 105 (1982).

    ADS  Google Scholar 

  95. C.A. Murray, P.L. Gammel, D.J. Bishop, D. J. Mitzi, and A. Kapitulnik, Phys. Rev. Lett., 64, 2312 (1990).

    ADS  Google Scholar 

  96. R. Seshadri and R.M. Westervelt, Phys. Rev. Lett., 66, 2774 (1991).

    ADS  Google Scholar 

  97. S. Fortune, Algorithmica, 2, 153 (1987).

    MathSciNet  MATH  Google Scholar 

  98. G.F. Voronoi, J. Reine Agnew. Math., 134, 198 (1908).

    MATH  Google Scholar 

  99. C.A. Murray, W.O. Sprenger, and R.A. Wenk, Phys. Rev. B., 42, 688 (1990).

    ADS  Google Scholar 

  100. D.G. Grier, C.A. Murray, C.A. Bolle, P.L. Gammel, D.J. Bishop, D.B. Mitzi, and A. Kalpitulnik, Phys. Rev. Lett., 66, 2270 (1991).

    ADS  Google Scholar 

  101. N.D. Mermin, Phys. Rev., 176, 250 (1968).

    ADS  Google Scholar 

  102. R.E. Peierls, Helv. Phys. Acta., 7, 81 (1923).

    Google Scholar 

  103. B.I. Halperin and D.R. Nelson, Phys. Rev. Lett., 4, 121 (1978).

    MathSciNet  ADS  Google Scholar 

  104. D.R. Nelson and B.I. Halperin, Phys. Rev. B., 19, 2457 (1979).

    ADS  Google Scholar 

  105. S.-K. Ma, Modem Theory of Critical Phenomena, Benjamin/Cummings, Reading, 1976.

    Google Scholar 

  106. E.M. Chudnovsky, Phys. Rev. B., 43, 7873 (1991).

    Google Scholar 

  107. W.L. McMillan, Phys. Rev. B., 14, 1976 (1976).

    Google Scholar 

  108. L. F. Mattheiss, Phys. Rev. B., 8, 3719 (1973).

    ADS  Google Scholar 

  109. H.W. Myron and A.J. Freeman, Phys. Rev. B, 15, 885 (1977).

    ADS  Google Scholar 

  110. A.W. Overhauser, Phys. Rev., 128, 1437 (1962).

    ADS  MATH  Google Scholar 

  111. A. W. Overhauser, Phys. Rev., 167 (1968).

    Google Scholar 

  112. M.-H. Whangbo, R.J. Cava, F.J. DiSalvo, and R.M. Fleming, Solid State Communications, 43, 277 (1982).

    ADS  Google Scholar 

  113. L.J. Whitman, J.A. Stroscio, R.A. Dragoset, and R.J. Celotta, Science, 251, 1206 (1991).

    ADS  Google Scholar 

  114. I.-W. Lyo and P. Avouris, Science, 253, 173 (1991).

    ADS  Google Scholar 

  115. T.A. Jung, R.R. Schlitter, J.K. Gimzewski, H. Tang, and C. Joachim, Science, 271, 181 (1996).

    ADS  Google Scholar 

  116. P. Avouris and I.-W. Lyo, Science, 264, 942 (1994).

    ADS  Google Scholar 

  117. S. Rubel, M. Trochet, E.E. Ehrichs, W.F. Smith, and A.L. d. Lozanne, J. Vac. Sci. Technol. B, 12, 1894 (1994).

    Google Scholar 

  118. J. A. Dagata, Science, 270, 1625 (1995).

    ADS  Google Scholar 

  119. E.A. Dobisz and C.R.K. Marrian, Appl. Phys. Lett., 58, 2526 (1991).

    ADS  Google Scholar 

  120. A.D. Kent, T.M. Shaw, S.V. Molar, and D.D. Awschalom, Science, 262, 1249 (1993).

    ADS  Google Scholar 

  121. A. Zaluska, L. Zaluski, and A. Witek, Mat. Sci. Eng., A, 122, 251 (1989).

    Google Scholar 

  122. U. Staufer, R. Wiesendanger, L. Eng, L. Rosenthaler, H.-R. Hidber, H.-J. Guntherodt, and N. Garcia, J. Vac. Sci. Technol. A, 6, 537 (1988).

    ADS  Google Scholar 

  123. A. Sato and Y. Tsukamoto, Nature, 363, 431 (1993).

    ADS  Google Scholar 

  124. A. Sato and Y. Tsukamoto, Advanced Materials, 6, 79 (1994).

    Google Scholar 

  125. A. Sato, S. Momose, and Y. Tsukamoto, J. Vac. Sci. Technol. B, Microelectron. Nanometer Struct., 13, 2832 (1995).

    ADS  Google Scholar 

  126. J. Zhang, J. Liu, J. Huang, P. Kim and C.M. Lieber, Science, 274, 757 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dai, H., Liu, J., Lieber, C.M. (1999). Elucidating Complex Charge Density Wave Structures in Low-Dimensional Materials by Scanning Tunneling Microscopy. In: Boswell, F.W., Bennett, J.C. (eds) Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4603-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4603-6_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5945-9

  • Online ISBN: 978-94-011-4603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics