Skip to main content

Part of the book series: Physics and Chemistry of Materials with Low-Dimensional Structures ((PCMALS,volume 22))

  • 290 Accesses

Abstract

Charge density-waves (CDW) have been the subject of intensive research for about twenty years. Most often they are found in synthetic compounds issuing from the assiduous efforts of chemists. These fascinating materials, inorganic and organic quasi-one-dimensional and quasi-two-dimensional conductors, have metallic properties that are unusual in many ways [1–4]. The key feature is the unstable metallic state, apt to spontaneously form a charge-density modulation ρ CDW (r) and an associated lattice distortion. The modulation period is determined by the conduction electron density, i.e. related to the Fermi wave vector k F,

$$\rho_{CDW}=\rho_osin(qr+\phi )=\rho_osin(2k_Fr+\phi )$$

in 1D presentation. As a consequence of this instability there is a rich variety of low temperature phase transitions driven by the temperature dependence of the CDW amplitude ρο and the interaction of its phase φ with the underlying lattice. One can find metal-insulator transitions, incommensurate and commensurate modulated structures for example. A central and most intriguing ingredient is the collective sliding mode conductivity [5–9] where the CDW condensate moves as a whole under an applied field. In practice this sliding is hindered by defects, since the phase φ of the modulation will have preferred values at defect sites, opposing the ideally free choice of position of the modulated charge density. This strong connection to defects influences the whole physics of charge density-waves with consequences that are manifest in a wide space and time scale from microscopic to macroscopic. Nevertheless the initial effects are found at the spatial scale of the defects and of the CDW wavelength. This is the reason why microstructural characterization of the CDW is of primary importance for understanding the CDW physics and of course not only with regard to the sliding CDW but also in the full scope of CDW related features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Wilson, F.J. Di Salvo and S. Mahajan, Adv. Phys., 24, 117 (1975).

    ADS  Google Scholar 

  2. D. Jérome and H.J. Schultz, Adv. Phys., 31, 299 (1982).

    ADS  Google Scholar 

  3. J. Rouxel, Ed., Crystal chemistry and properties of materials with quasi-one-dimensional structures, D. Reidel Publ. Co., Dordrecht, (1986).

    Google Scholar 

  4. C. Schlenker, Ed., Low-dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Kluwer Academic Publishers, Dordrecht, (1989).

    Google Scholar 

  5. P. Monceau, Ed., Electronic Properties of Inorganic Quasi-One-Dimensional Compounds. Part II: Experimental, D. Reidel Publ. Co., Dordrecht/Boston/Lancaster, (1985).

    Google Scholar 

  6. P. Monceau, in Electronic Properties of Inorganic Quasi-One-Dimensional Compounds. Part II: Experimental, Ed. P. Monceau, D. Reidel Publ. Co., Dordrecht, (1985), p. 138.

    Google Scholar 

  7. G. Grüner, Rev. Mod. Phys., 60, 1129 (1988).

    ADS  Google Scholar 

  8. L. Gorkov and G. Grüner, Ed., Charge Density Waves in Solids, Modern Problems in Condensed Matter Science, ed. V.M. Agranovich and A.A. Maradudin. Vol. 25, North Holland, Amsterdam, (1989).

    Google Scholar 

  9. G. Grüner and P. Monceau, in Charge Density Waves in Solids, Ed. L. Gorkov and G. Grüner, North Holland, Amsterdam, (1989), p. 137.

    Google Scholar 

  10. J.H. Crawford and L.M. Slifkin, Ed., Point defects in solids, Vol. 1, 2 & 3, Plenum Press, New York, 1972, 1975, 1978.

    Google Scholar 

  11. A.M. Stoneham, Theory of defects in solids, Clarendon Press, Oxford, (1975).

    Google Scholar 

  12. W. Hayes and A.M. Stoneham, Defects and defect processes in nonmetallic solids, J. Wiley & Sons, New York, (1985).

    Google Scholar 

  13. F. Agullo-Lopez, C.R.A. Catlow, and P.D. Townsend, Point defects in materials, Academic Press, London, (1988).

    Google Scholar 

  14. J.W. Brill, N.P. Ong, J.C. Eckert, J.W. Savage, S.K. Khanna, and R.B. Somoano, Phys. Rev. B, 23, 1517 (1981).

    ADS  Google Scholar 

  15. P.M. Chaikin, W.W. Fuller, R. Lacoe, J.F. Kwak, R.L. Greene, J.C. Eckert and N.P. Ong, Solid. St. Commun., 39, 553 (1981).

    ADS  Google Scholar 

  16. M.P. Everson and R.V. Coleman, Phys. Rev. B, 28, 6656 (1983).

    ADS  Google Scholar 

  17. L.F. Schneemeyer, F J. DiSalvo, S.E. Spengler and J.V. Waszczak, Phys. Rev. B, 30, 4297 (1984).

    ADS  Google Scholar 

  18. B.T. Collins, K.V. Ramanujachary, M. Greenblatt and J.V. Waszczak, J. Sol. St. Chem., 77, 384 (1988).

    Google Scholar 

  19. C. Schlenker, J. Dumas, C. Escribe-Filippini and H. Guyot, in Low-dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, Kluwer Academic Publishers, Dordrecht, (1989), p. 159.

    Google Scholar 

  20. R.E. Thorne, Phys. Rev. B, 45, 5804 (1992).

    MathSciNet  ADS  Google Scholar 

  21. M.C. Aronson and M.B. Salamon, Phys. Rev. B, 38, 10476 (1988).

    ADS  Google Scholar 

  22. J.Y. Veuillen, R. Chevalier, J. Marcus and C. Schlenker, Solid. St. Commun., 63, 587 (1987).

    ADS  Google Scholar 

  23. D.J. Lesueur, J. Morillo, H. Mutka, A. Audouard and J.C. Jousset, Rad. Effects, 77, 125 (1983).

    Google Scholar 

  24. H. Mutka, S. Bouffard, M. Sanquer, J. Dumas and C. Schlenker, Mol. Cryst Liq. Cryst, 121, 133 (1985).

    Google Scholar 

  25. H. Vichery, F. Rullier-Albenque and S. Bouffard, J. Phys. France, 50, 685 (1989).

    Google Scholar 

  26. G. Mihály and L. Zuppiroli, Phil. Mag., A45, 549 (1982).

    ADS  Google Scholar 

  27. L. Zuppiroli, Rad. Effects, 62, 53 (1982).

    Google Scholar 

  28. L. Zuppiroli, in Low Dimensional Conductors and Superconductors, Ed. D. Jérome and L.G. Caron, Plenum Press, New York, (1987), p. 307.

    Google Scholar 

  29. L. Zuppiroli, in Highly Conducting Quasi-one-dimensional Organic Crystals, Ed. E.M. Conwell, Academic Press, New York, (1988), p. 437

    Google Scholar 

  30. L.F. Schneemeyer, Ph. D. Thesis, Cornell University, 1978.

    Google Scholar 

  31. F.J. DiSalvo and J.V. Waszczak, Phys. Rev. B, 23, 457 (1981).

    ADS  Google Scholar 

  32. H. Mutka and P. Molinié, J. Phys. C: Solid State Phys., 15, 6305 (1982).

    ADS  Google Scholar 

  33. X.-L. Wu, P. Zhou and C.M. Lieber, Phys. Rev. Lett., 61, 2604 (1988).

    ADS  Google Scholar 

  34. Y. Imry and Shang-Keng Ma, Phys. Rev. Lett., 35, 1399 (1975).

    ADS  Google Scholar 

  35. L.J. Sham and B.R. Patton, Phys. Rev. B, 13, 3151 (1976).

    ADS  Google Scholar 

  36. H. Schuster, Solid. St. Commun., 14, 127 (1974).

    MathSciNet  ADS  Google Scholar 

  37. W.A. Roshen, Phys, Rev. B, 31, 7296 (1985).

    ADS  Google Scholar 

  38. J.A.R. Stiles, D.L. Williams,, and M.J. Zuckermann, J. Phys. C: Solid State Phys., 9, L489 (1978).

    Google Scholar 

  39. H. Mutka, Thèse Docteur-és-Sciences Physiques, Université de Paris-Sud Orsay, 1983.

    Google Scholar 

  40. H. Mutka, N. Housseau, J. Pelissier, R. Ayroles, and C. Roucau, Solid St. Commun., 50, 161 (1984).

    ADS  Google Scholar 

  41. J.R. Long, S.P. Bowen and N.E. Lewis, Solid St. Commun., 22, 363 (1977).

    ADS  Google Scholar 

  42. W.L. McMillan, Phys. Rev. B, 16, 643 (1977).

    ADS  Google Scholar 

  43. J.-P. Pouget, in Low-dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, Kluwer Academic Publishers, Dordrecht, (1989), p. 87.

    Google Scholar 

  44. R.S. Kwok, G. Grüner, and S.E. Brown, Phys. Rev. Lett., 65, 365 (1990).

    ADS  Google Scholar 

  45. M.D. Núñez-Regueiro, J.M. Lopez-Castillo and C. Ayache, Phys. Rev. Lett., 55, 1391 (1985).

    Google Scholar 

  46. L. Forró, A. Jánossy, L. Zuppiroli, and K. Bechgaard, J. de Physique, 43, 977 (1982).

    Google Scholar 

  47. L. Forró, L. Zuppiroli, J.P. Pouget, and K. Bechgaard, Phys. Rev. B, 27, 7600 (1983).

    ADS  Google Scholar 

  48. B.I. Halperin and C.M. Varma, Phys. Rev. B, 14, 4030 (1976).

    ADS  Google Scholar 

  49. F. Schwabl and U.C. Täucher, Phys, Rev. B, 43, 11112 (1991).

    ADS  Google Scholar 

  50. I. Bâldea and M. Badescu, Phys. Rev. B, 48, 8619 (1993).

    ADS  Google Scholar 

  51. I. Bâldea, Physica Scripta, 42, 749 (1990).

    ADS  Google Scholar 

  52. D.E. Moncton, F.J. DiSalvo, J.D. Axe, L.J. Sham and B.R. Patton, Phys. Rev. B, 14, 3432 (1976).

    ADS  Google Scholar 

  53. H. Mutka, Phase Trans., 11, 221 (1988).

    Google Scholar 

  54. E. Sweetland, C.-Y. Tsai, B.A. Wintner, J.D. Brock and R.E. Thorne, Phys. Rev. Lett., 65, 3165 (1990).

    ADS  Google Scholar 

  55. S.M. DeLand, G. Mozurkewich, and L.D. Chapman, Phys. Rev. Lett., 66, 2026 (1991).

    ADS  Google Scholar 

  56. L.J. Sham and B.R. Patton, Phys. Rev. Lett., 36, 733 (1976).

    ADS  Google Scholar 

  57. I. Tüttö and A. Zawadowski, Phys. Rev. B, 32, 2449 (1985).

    ADS  Google Scholar 

  58. L. Jian-cheng, J. Phys. C: Solid State Physics, 20, 4917 (1987).

    ADS  Google Scholar 

  59. L. Zuppiroli, H. Mutka, and S. Bouffard, Mol. Cryst Liq. Cryst., 81, 1 (1982).

    Google Scholar 

  60. J.R. Tucker, W.G. Lyons, and G. Gammie, Phys. Rev. B, 38, 1148 (1988).

    ADS  Google Scholar 

  61. B. Renker, L. Pintschovius, W. Gläser, H. Rietschel, R. Comès, L. Liebert and W. Drexel, Phys. Rev. Lett., 32, 836 (1974).

    ADS  Google Scholar 

  62. K. Carneiro, in Electronic Properties of Inorganic Quasi-One-Dimensional Compounds. Part II: Experimental, Ed. P. Monceau, D. Reidel Publ. Co., Dordrecht, 1985, p.

    Google Scholar 

  63. S. Girault, A.H. Moudden, J.P. Pouget, and J.M. Godard, Phys. Rev. B, 38, 7980 (1988).

    ADS  Google Scholar 

  64. C. Berthier, D. Jérome, and P. Molinié, J. Phys. C: Solid State Physics, 11, 797 (1978).

    ADS  Google Scholar 

  65. P. Butaud, P. Ségransan, C. Berthier, J. Dumas, and C. Schlenker, Phys. Rev. Lett., 55, 253 (1985).

    ADS  Google Scholar 

  66. G.P.E.M. van Bakel and J.T.D. Hosson, Phys. Rev. B, 46, 2001 (1992).

    ADS  Google Scholar 

  67. H. Mutka, S. Bouffard, G. Mihály, and L. Mihály, J. Phys. (Paris) Lettres, 45, L113 (1984).

    Google Scholar 

  68. D. Reagor and G. Grüner, Phys. Rev. B, 39, 7626 (1989).

    ADS  Google Scholar 

  69. H. Mutka and N. Housseau, Phil. Mag., 797 (1983).

    Google Scholar 

  70. T. Tamegai, K. Tsutsumi and S. Kagoshima, Synt. Met., 19, 923 (1987).

    Google Scholar 

  71. S. Girault, A.H. Moudden and J.P. Pouget, Phys. Rev. B, 39, 4430 (1989).

    ADS  Google Scholar 

  72. W.L. McMillan, Phys. Rev. B, 12, 1187 (1975).

    ADS  Google Scholar 

  73. J.P. Pouget and R. Comes, in Charge Density Waves in Solids, Ed. L. Gorkov and G. Grüner, North-Holland, Amsterdam, (1989), p. 85.

    Google Scholar 

  74. P. Prelovsek, Phase. Trans., 11, 203 (1988).

    Google Scholar 

  75. P. Bak, Rep. Prog. Phys., 45, 587 (1982).

    MathSciNet  ADS  Google Scholar 

  76. S. Aubry and P. Quemerais, in Low-dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, Kluwer Academic Publishers, Dordrecht, (1989), p. 295.

    Google Scholar 

  77. A.H. Moudden, J.D. Axe, P. Monceau and F. Lévy, Phys. Rev. Lett., 65, 223 (1990).

    ADS  Google Scholar 

  78. G. Hutiray and J. Sólyom, Ed., Charge Density Waves in Solids, Lecture Notes in Physics, Vol. 217, Springer-Verlag, Berlin Heidelberg New York Tokyo, (1985).

    Google Scholar 

  79. G. Mihály and L. Mihály, Phys. Rev. Lett., 52, 149 (1984).

    ADS  Google Scholar 

  80. R.J. Cava, R.M. Fleming, E.A. Rietman, R.G. Gunn, and L.F. Schneemeyer, Phys. Rev. Lett., 53, 1677 (1984).

    ADS  Google Scholar 

  81. J.P. Jamet, Phase Trans., 11, 335 (1988).

    Google Scholar 

  82. D. Feinberg and J. Friedel, J. Phys. France, 49, 485 (1988).

    Google Scholar 

  83. D. Feinberg and J. Friedel, in Low-dimensional Electronic Properties of Molybdenum Bronzes and Oxides, Ed. C. Schlenker, Kluwer Academic Publishers, Dordrecht, (1989), p. 407.

    Google Scholar 

  84. A. Janossy, G.L. Dunifer and J.S. Payson, Phys. Rev. B, 38, 1577 (1988).

    ADS  Google Scholar 

  85. H. Mutka, F. Rullier-Albenque, and S. Bouffard, J. Phys. (Paris), 48, 425 (1987).

    Google Scholar 

  86. R.V. Coleman, Z. Dai, W.W. McNairy, C.G. Slough, and C. Wang, in Surface properties of layered structures, Ed. G. Benedek, Kluwer Academic Publishers, Dordrecht, (1992), p. 27.

    Google Scholar 

  87. Z. Dai, C.G. Slough, and R.V. Coleman, Phys. Rev. B, 45, 9469 (1992).

    ADS  Google Scholar 

  88. R.L. Withers and J. A. Wilson, J. Phys. C: Solid State Phys, 19, 4809 (1986).

    ADS  Google Scholar 

  89. J.C. Bennett, F.W. Boswell, A. Prodan, J.M. Corbett, and S. Ritchie, J. Phys.: Condens. Matter, 3, 6959 (1991).

    ADS  Google Scholar 

  90. J.C. Bennett, S. Ritchie, A. Prodan, F.W. Boswell, and J.M. Corbett, J. Phys.: Condens. Matter, 4, 2155 (1992).

    ADS  Google Scholar 

  91. H. Mutka, S. Bouffard and L. Zuppiroli, Lecture Notes in Physics, 217, 55 (1985).

    ADS  Google Scholar 

  92. G. Salvetti, C. Roucau, R. Ayroles, H. Mutka and P. Molinié, C.R. Acad. Sc. Paris, 299, 843 (1985).

    Google Scholar 

  93. G. Salvetti, R. Ayroles, C. Roucau, H. Mutka and P. Molinié, Lecture Notes in Physics, 211, 92 (1985).

    ADS  Google Scholar 

  94. G. Salvetti, C. Roucau, R. Ayroles, H. Mutka and P. Molinié, J. Phys. (Paris) Lettres, 46, L507 (1985).

    Google Scholar 

  95. X.L. Wu and C.M. Lieber, Phys. Rev. B, 41, 1239 (1990).

    ADS  Google Scholar 

  96. H. Dai and C.M. Lieber, Phys. Rev. Lett., 66, 3183 (1991).

    ADS  Google Scholar 

  97. H. Dai and C.M. Lieber, Phys. Rev. Lett., 69, 1576 (1992).

    ADS  Google Scholar 

  98. B. Giambattista, C.G. Slough, W.W. McNairy and R.V. Coleman,, Phys. Rev. B, 41, 10082 (1990).

    ADS  Google Scholar 

  99. J. McCarten, M. Maher, T.L. Adelman, and R.E. Thorne, Phys. Rev. Lett., 63, 2841 (1989).

    ADS  Google Scholar 

  100. J.R. Tucker, Phys. Rev. Lett., 65, 270 (1990).

    ADS  Google Scholar 

  101. J.C. Gill, Phys. Rev. Lett., 65, 271 (1990).

    ADS  Google Scholar 

  102. R.E. Thorne and J. McCarten, Phys. Rev. Lett., 65, 272 (1990).

    ADS  Google Scholar 

  103. D.A. DiCarlo, J. McMarten, T.L. Adelman, M. Maher and R.E. Thorne, Phys. Rev. B, 42, 7643 (1990).

    ADS  Google Scholar 

  104. J.R. Tucker, Phys. Rev. B, 47, 7614 (1993).

    ADS  Google Scholar 

  105. D.A. DiCarlo, J. McMarten and R.E. Thorne, Phys. Rev. B, 47, 7614 (1993).

    ADS  Google Scholar 

  106. H. Fukyama and P.A. Lee, Phys. Rev. B, 17, 535 (1978).

    ADS  Google Scholar 

  107. P.A. Lee and H. Fukuyama, Phys. Rev. B, 17, 542 (1978).

    ADS  Google Scholar 

  108. P.A. Lee and T.M. Rice, Phys. Rev. B, 19, 3970 (1979).

    ADS  Google Scholar 

  109. Y. Fukuyama and H. Takayama, in Electronic Properties of Inorganic Quasi-One-Dimensional Compounds. Part I: Theoretical, Ed. P. Monceau, D. Reidel Publ. Co., Dordrecht, (1985), p. 40.

    Google Scholar 

  110. J.R. Tucker, Phys. Rev. B, 40, 5447 (1989).

    ADS  Google Scholar 

  111. S. Abe, J. Phys. Soc. Japan, 54, 3494 (1985).

    ADS  Google Scholar 

  112. S. Abe, J. Phys. Soc. Japan, 55, 1987 (1986).

    ADS  Google Scholar 

  113. H. Mutka, S. Bouffard, J. Dumas and C. Schlenker, J. Phys. (Paris) Lettres, 45, L729 (1984).

    Google Scholar 

  114. T. Chen and J.R. Tucker, Phys. Rev. B, 41, 7402 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mutka, H. (1999). Influence of Defects and Impurities on Charge Density Wave Systems. In: Boswell, F.W., Bennett, J.C. (eds) Advances in the Crystallographic and Microstructural Analysis of Charge Density Wave Modulated Crystals. Physics and Chemistry of Materials with Low-Dimensional Structures, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4603-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4603-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5945-9

  • Online ISBN: 978-94-011-4603-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics