Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 52))

  • 410 Accesses

Abstract

Direct numerical simulations are performed to approach the experiment of Hopfinger, Browand & Gagne (Hopfinger et al., 1982) in which turbulence is generated by an oscillating grid in a rotating tank. Effects of both rotation and confinement are analyzed, for various Rossby and Reynolds numbers. When the rotation is strong enough, we observe concentrated vortices having axes approximately parallel to the rotation axis. The Fourier- Fourier-Chebyshev pseudo-spectral code allows to take into account confinement between two parallel walls and the experimental oscillating grid is modeled by a forcing in an horizontal plane close to the lower wall. Both walls and the forcing plane are perpendicular to the vertical rotation axis.

A straightforward post processing of the numerical results for isolating coherent vortices would require the evaluation of vorticity which appear to be inappropriate because of its noisy and strongly inhomogeneous characters. Here, we propose an identification method based on the normalized angular momentum. Applied to the DNS velocity fields, it is a useful tool allowing the localization of both cyclonic and anticyclonic vortices with a very good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bouvard, M. & Dumas, H. 1967. Application de la méthode du fil chaud à la mesure de la turbulence dans l’eau. Houille Blanche, 22:723–733.

    Article  Google Scholar 

  • Briggs, D.A., Ferziger, J.H., Koseff, J.R., & Monismith, S.G. 1996. Entrainment in a shear-free turbulent mixing layer. J. Fluid Mech., 310:215–242.

    Article  ADS  MATH  Google Scholar 

  • Cambon, C., Jacquin, L., & Lubrano, J.L. 1992. Towards a new reynolds stress model for rotating turbulent flows. Phys. Fluids, 4:812–824.

    Article  ADS  MATH  Google Scholar 

  • Cambon, C., Mansour, N. N., amp; Godeferd, F. S. 1997. Energy transfer in rotating turbulence. J. Fluid Mech., 337:303–332.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Canuto, C., Hussaini, M.Y., Quarteroni, A., & Zang, T.A. 1988. Spectral Methods in Fluid Dynamics. Springer-Verlag.

    Google Scholar 

  • Hopfinger, E.J. & Toly, J.-A. 1976. Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech., 78:155–175.

    Article  ADS  Google Scholar 

  • Hopfinger, E. J., Browand, F. K., & Gagne, Y. 1982. Turbulence and waves in a rotating tank. J. Fluid Mech., 125:505–534.

    Article  ADS  Google Scholar 

  • Hopfinger, E. J. & van Heijst, G. J. F. 1993. Vortices in rotating fluids. Ann. Rev. Fluid Mech., 25:241.

    Article  ADS  Google Scholar 

  • Jacquin, L., Leuchter, O., & Mathieu, C. Cambon J. 1990. Homogeneous turbulence in the presence of rotation. J. Fluid Mech., 220:1–52.

    Article  ADS  MATH  Google Scholar 

  • Kloosterziel, R. C. 1990. Barotropic vortices in a rotating fluid. PhD thesis, University of Utrecht, The Netherlands.

    Google Scholar 

  • Kristoffersen, R. & Andersson, H.I. 1993. Direct simulations of low-reynolds-number turbulent flow in a rotating channel. J. Fluid Mech., 256:163–197.

    Article  ADS  MATH  Google Scholar 

  • Leblanc, S. & Cambon, C. 1997. On the three-dimensional instabilities of plane flows subjected to coriolis force. To appear in Phys. Fluids.

    Google Scholar 

  • Long, R.R. 1978. Theory of turbulence in a inhomogeneous fluid induced by an oscillating grid. Phys. Fluids, 21(10):1887–1888.

    Article  ADS  MATH  Google Scholar 

  • McDougall, T.J. 1979. Measurements of turbulence in a zero-mean-shear mixed layer. J. Fluid Mech., 94:409–431.

    Article  ADS  Google Scholar 

  • Michard, M., Graftieaux, L., Lollini, L., & Grosjean, N. 1997. Identification of vortical structures by a non-local criterion: Applications to p.i.v. measurements ans d.n.s results of turbulent rotating flows. To appear in proceedings of the Eleventh Symposium on Turbulent Shear Flows, Grenoble.

    Google Scholar 

  • Michard, M., Simoens, S., Grosjean, N., & Safsaf, D. 1996. Caractérisation du mouvement de précession d’un tourbillon à l’aide de la vélocimétrie par images de particules. 5ème Congrès Francophone de Vélocimétrie Laser, Rouen.

    Google Scholar 

  • Pascal, H. 1996. Etude numérique d’une turbulence compressée et/ou cisaillée entre deux plans parallèles par simulation des grandes échelles (LES): évaluation de modèles statistiques de turbulence. Ecole Centrale de Lyon. Rapport de thèse.

    Google Scholar 

  • Pascal, H. & Buffat, M. 1996. L.e.s. of turbulent flows conpressed and/or sheared between two walls on parallel computer using a “divergence-free spectral galerkin method. Computational Fluid Dynamics, Wiley & Sons Ltd:884–891.

    Google Scholar 

  • Pasquarelli, F., Quarteroni, A., & Sacchi-Landriani, G. 1987. Spectral approximations of the stokes problem by divergence-free functions. Journal of Scientific Computing, 2:195–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Pedley, T.J. 1969. On the stability of viscous flow in a rapidly rotating pipe. J. Fluid Mech., 128:97–115.

    Article  ADS  Google Scholar 

  • Proudman, J. 1916. On the motion of solids in a liquid possessing vorticity. Proc. R. Soc. London, A 92:408.

    ADS  Google Scholar 

  • Risso, F. 1994. Déformation et rupture d’une bulle dans une turbulence diffusive. Thèse, I.N.P. Toulouse, Institut de mécanique des fluides de Toulouse.

    Google Scholar 

  • Thompson, S.M. & Turner, J.S. 1975. Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech., 67:349–368.

    Article  ADS  Google Scholar 

  • Tillmark, N. & Alfredsson, P.H. 1996. Experiments on rotating plane couette flow. Advances in Turbulence VI, Kluwer.

    Google Scholar 

  • Yang, G. 1992. DNS of boundary forced turbulent flow in a non-rotating and a rotating system. Cornell University. Ph. D. Thesis dissertation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Lollini, L., Cambon, C., Michard, M., Graftieaux, L. (1999). Simulation and Identification of Organized Vortices in Rotating Turbulent Flows. In: Sørensen, J.N., Hopfinger, E.J., Aubry, N. (eds) IUTAM Symposium on Simulation and Identification of Organized Structures in Flows. Fluid Mechanics and Its Applications, vol 52. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4601-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4601-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5944-2

  • Online ISBN: 978-94-011-4601-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics