Skip to main content

Some Geophysical Problems Involving Convection in Porous Media with Application to Energy and the Environment

  • Chapter
Energy and the Environment

Part of the book series: Environmental Science and Technology Library ((ENST,volume 15))

Abstract

Research in the area of convection in porous media has been reviewed by Nield and Bejan [1]. The topic is important in areas including the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal. As well, there are a number of geophysical applications. In [1], Chapter 11 is explicitly devoted to geophysical aspects, and geophysical applications are also implicitly involved in many other sections of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nield, D. A. and Bejan, A.: Convection in Porous Media, 2nd edition, Springer-Verlag, New York, 1998.

    Google Scholar 

  2. Horton, C. W. and Rogers, F. T.: Convection currents in a porous medium, J. Appl. Phys. 16 (1945), 367–370.

    Article  MathSciNet  MATH  Google Scholar 

  3. Lapwood, E. R.: Convection of a fluid in a porous medium, Proc. Camb. Phil Soc. 44 (1948), 508–521.

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng, P.: Heat transfer in geothermal systems, Adv. Heat Transfer 14 (1978), 1–105.

    Article  Google Scholar 

  5. Cheng, P. and Minkowycz, W. J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. Geophys. Res. 8 (1977), 2040–2044.

    Article  Google Scholar 

  6. Donaldson, I. G.: Heat and mass circulation in geothermal systems, Ann. Rev. Earth Planet Sci. 10 (1982), 377–395.

    Article  Google Scholar 

  7. Grant, M. A.: Geothermal reservoir modeling, Geothermics 12 (1983), 251–263.

    Article  Google Scholar 

  8. O’sullivan, M. J.: Geothermal reservoir simulation, Int. J. Energy Res. 9 (1985), 319–332. An edited version was reprinted in M. Economides and P. Ungemash (eds.), Applied Geothermics, Wiley, New York, 1987.

    Article  Google Scholar 

  9. Bodvarsson, G. S., Pruess, K. and Lippmann, M. J.: Modeling of geothermal systems, J. Petrol. Tech. 38 (1986), 1007–1021.

    Google Scholar 

  10. Bjornsson, S. and Stefansson, V.: Heat and mass transport in geothermal reservoirs, in J. Bear and M. Y. Corapcioglu (eds.), Advances in Transport Phenomena in Porous Media, Martinus Nijhoff, Amsterdam, 145–153, 1987.

    Google Scholar 

  11. McKibbin, R.: Mathematical models for heat and mass transport in geothermal systems, in D. B. Ingham and I. Pop (eds.), Transport Phenomena in Porous Media, Elsevier, Amsterdam, 1998.

    Google Scholar 

  12. Kissling, W., McGuinness, M.J., Weir, G., White, S. and Young, R.: Vertical two-phase flow in porous media, Transport in Porous Media, 8 (1992), 99–131.

    Article  Google Scholar 

  13. Weir, G.J.: Geometric properties of two phase flow in geothermal reservoirs, Transport in Porous Media, 6 (1991), 501–517.

    Article  Google Scholar 

  14. Kissling, W., McGuinness, M. J., McNabb, A., Weir, G., White, S. and Young, R.: Analysis of one-dimensional horizontal two-phase flow in geothermal reservoirs, Transport in Porous Media, 7, (1992), 223–253.

    Article  Google Scholar 

  15. Weir, G. J.: The relative importance of convective and conductive effects in two-phase geothermal fields, Transport in Porous Media, 16 (1994), 289–295.

    Article  Google Scholar 

  16. Young, R.: Two-phase geothermal flows with conduction and the connection with Buckley-Leverett theory, Transport in Porous Media 12 (1993), 261–278.

    Article  Google Scholar 

  17. Young, R.: Two-phase brine mixtures in the geothermal context and the polymer flood model, Transport in Porous Media 11 (1993), 179–185.

    Article  Google Scholar 

  18. Weir, G. J.: Nonreacting chemical transport in two-phase reservoirs — factoring diffusive and wave properties, Transport in Porous Media, 17 (1994), 201–220.

    Article  Google Scholar 

  19. Young, R. and Weir, G.: Constant rate production of geothermal fluid from a two-phase vertical column. I: Theory, Transport in Porous Media., 14 (1994), 265–286.

    Article  Google Scholar 

  20. Satik, C., Parlar, M.L. and Yortsos, Y. C.: A study of steady-state, steam-water counterflow in porous media, Int. J. Heat Mass Transfer, 34 (1991), 1755–1771.

    Article  Google Scholar 

  21. Stubos, A. K., Satik, C. and Yortsos, Y. C.: Effects of capillary heterogeneity on vapo-liquid counterflow in porous media, Int. J. Heat Mass Transfer, 36 (1993), 967–976.

    Article  Google Scholar 

  22. Doughty, C. and Pruess, K.: A similarity solution for the two-phase fluid and heat flow near high-level nuclear waste packages emplaced in porous media, Int. J. Heat Mass Transfer, 33 (1990), 1205–1222.

    Article  Google Scholar 

  23. Doughty, C. and Pruess, K.: A similarity solution for two-phase water, air and heat flow near a linear heat source in a porous medium, J. Geophys. Res., 97 (1992),1821–1838.

    Article  Google Scholar 

  24. Pestov, I.: Structured geothermal systems: Application of dimensional methods, Math. Comput. Modelling 25 (1997), 43–63.

    Article  MathSciNet  MATH  Google Scholar 

  25. McGuinness, M. J., Blakely, M., Pruess, K. and O’sullivan, M. J.: Geothermal heat pipe stability: solution selection by upstreaming and boundary conditions, Transport in Porous Media, 11 (1993), 71–100.

    Article  Google Scholar 

  26. McGuinness, M. J.: Steady solution selection and existence in geothermal heat pipes — I. The convective case, Int. J. Heat Mass Transfer 39 (1996), 259–274.

    Article  Google Scholar 

  27. Bau, H. H. and Torrance, K. E.: Boiling in low permeability porous materials, Int. J. Heat Mass Transfer 25 (1982), 45–55.

    Article  Google Scholar 

  28. Stubos, A. K., Satik, C. and Yortos, Y. C.: Critical heat flux hysteresis in vapor-liquid counterflow in porous media, Int. J. Heat Mass Transfer 36 (1993), 227–231.

    Article  MATH  Google Scholar 

  29. Young, R. M.: Phase transitions in one-dimensional steady state hydrothermal flows, J. Geophys. Res. 101 (1996), 18011–18022.

    Article  Google Scholar 

  30. Young, R. M.: A basic model for vapour-dominated geothermal reservoirs, in S. F. Simmons, O. E. Morgan and M. G. Dunstall (eds.), Proceedings ot the 18th NZ Geothermal Workshop, University of Auckland, Auckland, New Zealand, 301–304, 1996.

    Google Scholar 

  31. Young, R. M.: Classification of one-dimensional steady-state two-phase geothermal flows including permeability variations: Part 1, theory and special cases; Part 2, the general case, Int. J. Heat Mass Transfer 41 (1998), in press.

    Google Scholar 

  32. Palm, E. & Tveitereid, M.: On heat and mass flux through dry snow, J. Geophys.Res. 84 (1979),745–749.

    Article  Google Scholar 

  33. Powers, D., O‘Neill, K. and Colbeck, S. G.: Theory of natural convection in snow, J. Geophys. Res. 90 (1985), 10641–10649.

    Article  Google Scholar 

  34. Sommerfeld, R. A. and Rocchio, J. E.: A study of the effects of macrosegregatiori and buoyancy-driven flow in binary mixture solidification, Water Resour. Res. 29 (1993), 2485–2490.

    Article  Google Scholar 

  35. Sturm, M. and Johnson, J. B.: Natural convection in the subarctic snow cover, J. Geophys. Res. 96 (1991), 11657–11671.

    Article  Google Scholar 

  36. Albert, M. R.: Advective-diffusive heat transfer in snow, ASME Int. Mech. Cong. Expos., San Francisco, Paper 95-WA/HT-44, 1995.

    Google Scholar 

  37. Worster, M. G.: Convection in mushy layers, Annu. Rev. Fluid Mech. 29 (1997), 91–122.

    Article  MathSciNet  Google Scholar 

  38. Beckermann, C. and Viskanta, R.: Mathematical modeling of transport phenomena during alloy solidification, Appl. Mech. Rev. 46 (1993) 1–27.

    Article  MathSciNet  Google Scholar 

  39. Beckermann, C. and Wang, C. Y.: Multiphase/-scale modeling of alloy solidification, Ann. Rev. Heat Transfer, 6 (1995), 115–198.

    Google Scholar 

  40. Prescott, P. J. and Incropera, F. P.: Convection heat and mass transfer in alloy solidification, Advances in Heat Transfer 28 (1996) 231–329.

    Article  Google Scholar 

  41. Nield, D.A.: Modelling Mushy Zones, in S. F. Simmons, O. E. Morgan and M. G. Dunstall (eds.) Proc. 19th New Zealand Geothermal Workshop, University of Auckland, Auckland, New Zealand, pp. 223–229, 1997.

    Google Scholar 

  42. Fearn, D.R., Loper, D.E., and Roberts, P.H.: Structure of the Earth’s inner core, Nature, 292 (1981), 232–233.

    Article  Google Scholar 

  43. Bergman, M. I. and Fearn, D. R.: Chimneys on the Earth’s inner-outer core boundary? Geophys. Res. Lett., 21 (1994), 477–480.

    Article  Google Scholar 

  44. Kerr, R.C. and Tait, S.: Crystallization and compositional convection in a porous medium with application to layered igneous intrusions, J. Geophys. Res. 91 (1986), 3591–3608.

    Article  Google Scholar 

  45. Tait, S. and Jaupart, G.: Compositional convection in a reactive crystalline mush and melt differentiation, J. Geophys. Res. 97 (1992), 6735–6756.

    Article  Google Scholar 

  46. Eide, L.I. and Martin, S.: The formation of brine drainage features in young sea ice, J. Glaciol. 14 (1975), 137–154.

    Google Scholar 

  47. Wettlaufer, J.S., Worster, M.G. and Huppert, H.E.: The phase evolution of young sea ice, Geophys. Research Lett. 24 (1997), 1251–1254.

    Article  Google Scholar 

  48. Wettlaufer, J.S., Worster, M.G. and Huppert, H.E.: Natural convection during solidification of an alloy from above with application to the evolution of sea ice, J. Fluid Mech., 344 (1997). 291–316.

    Article  Google Scholar 

  49. Bergman, M. I., Fearn, D. R., Bloxam, J. and Shannon, M. C.: Convection and channel formation in solidifying Pb-Sn alloys, Metall. Mat. Trans. A. 28 (1997), 859–866.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nield, D.A. (1999). Some Geophysical Problems Involving Convection in Porous Media with Application to Energy and the Environment. In: Bejan, A., Vadász, P., Kröger, D.G. (eds) Energy and the Environment. Environmental Science and Technology Library, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4593-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4593-0_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5943-5

  • Online ISBN: 978-94-011-4593-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics