Skip to main content

Radiation Induced Cancer in Animals

  • Chapter

Part of the book series: NATO Science Series ((ASEN2,volume 55))

Abstract

Under normal circumstances radiation levels in the environment due to industrial applications do not exceed those from natural radiation. Detrimental consequences of background radiation in man i e, exposure to an effective dose of 2 mSv have never been proven. The reactor accident at Chernobyl was a catastrophe with large social and economical consequences. Statements that more than 100,000 persons would already have died due to this accident, however, have never been validated. The highest levels of radioactive contamination mainly iodine and caesium, occurred in Belarus. Up to 1996 more than 300 excess cases of thyroid cancer were observed in children [1]. The minimum latency period between exposure and diagnosis of thyroid cancer was four years. Since most cancers could be cured, the number of fatal cases was restricted to three [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. No authors listed. (1996), Chernobyl’s legacy to science. Editorial. Nature 380 653.

    Article  Google Scholar 

  2. IAEA (1996). Joint IAEA/EC/WH International Conference: One Decade after Chernobyl: Summing up the Consequences of the Accident.

    Google Scholar 

  3. Kellerer, A.M. and Chmelevsky, D. (1982). Analysis of tumor rates and incidences - A survey of concepts and methods. In J.J. Broerse and G.B. Gerber (eds.) Neutron Carcinogenesis. pp. 209–231. Commission of the European Communities, Luxembourg.

    Google Scholar 

  4. Broerse, J.J., Hennen, L.A. and Zwieten, M.J. van (1985). Radiation carcnogenesis in experimental animals and its implications for radiation protection. Inl. J. Radiat. Biol. 48 167–187.

    Article  CAS  Google Scholar 

  5. ICRP (1990). Recommendations of the International Commission on Radiological Protection. ICRP Publication 60, Annals of the ICRP 21, 1–3. Pergamon Press, Oxford.

    Google Scholar 

  6. ICRP (1977). Recommendations of the International Commission on Radiological Protection. ICRP Publication 26, Annals of the ICRP 1, 3. Pergamon Press, Oxford.

    Google Scholar 

  7. UNSCEAR (1988). Sources,Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.

    Google Scholar 

  8. UNSCEAR (1993). Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York.

    Google Scholar 

  9. Broerse, J.J. and Dennis, J.A. (1990). Dosimetric aspects of exposure of the population to ionizing radiation. Int. J. Radial. Biol. 57 633–645.

    Article  CAS  Google Scholar 

  10. Kellerer, A.M. and Barclay, D. (1992). Age dependences in the modelling of radiation carcinogenesis. Radial. Prot. Dosim. 41 273–281.

    Google Scholar 

  11. Straume, T. (1996). Risk implications of the neutron discrepancy in the Hiroshima DS86 dosimetry system. Radial. Prot. Dosim. 67 9–12.

    Article  CAS  Google Scholar 

  12. Broerse, J.J., Bekkum, D.W. van, Hollander, C.F. and Davids, J.A.G. (1978). Mortality of monkeys after exposure to fission neutrons and the effect of autologous bone marrow transplantation. Int. J. Radial. Biol. 34 253–264.

    Article  CAS  Google Scholar 

  13. Broerse, J.J., Bekkum, D.W. van, Zoetelief J. and Zurcher, C. (1991). Relative biological effectiveness for neutron carcinogenesis in monkeys and rats. Radial. Res. 128 S128–S135.

    Article  CAS  Google Scholar 

  14. Wood, D.H. (1991). Long-term mortality and cancer risk in irradiated rhesus monkeys. Radial. Res. 126 132–140.

    Article  CAS  Google Scholar 

  15. Ullrich, R.L. and Preston, R.J. (1987). Myeloid leukemia in male RFM mice following irradiation with fission spectrum neutrons or y rays. Radial. Res. 109 165–170.

    Article  CAS  Google Scholar 

  16. Mole, R.H. (1984). Dose-response relationships. In J.D. Boice, J.F. Fraumeni. (eds.). Radiation Carcinogenesis: epidemiology and biological significance. New York, Raven Press, 403–420.

    Google Scholar 

  17. DiMajo, V., Coppola, M., and Rebessi S. et al. (1986). Dose-response relationships of radiation-induced Harderian gland tumours and myeloid leukaemia of the CBA/Cne mouse. J. Natl. Cancer Inst. 76 955–963.

    CAS  Google Scholar 

  18. Coggle, J.E. (1988). Lung tumor induction in mice after X-rays and neutrons. Int. J. Radial. Biol. 53585–598.

    Article  CAS  Google Scholar 

  19. Maisin, J.R., Wambersie, A., Gerber, G.B., Mattelin, G., Lambiet-Collier, M., Coster, B. de, Gueulette, J. (1988). Life-shortening and disease incidence in C57B1 mice after single and fractionated gamma and high-energy neutron exposure. Radiai Res. 113 300–317.

    Article  CAS  Google Scholar 

  20. Bekkum, D.W. van, Broerse, J.J., Hennen, L.A. and Solleveld, H.A. (1986). The gene transfermisrepair hypothesis of radiation carcinogenesis tested for induction of mammary tumours in rats. Leukem. Res. 10 761–766.

    Article  Google Scholar 

  21. Broerse, J.J. (1989). Influence of physical factors on radiation carcinogenesis in experimental animals. In K.F. Baverstock and J.W. Stather (eds.) Low Dose Radiation: Radiological Bases of Risk Assessment. pp. 181–194. Taylor & Francis, London.

    Google Scholar 

  22. Lowry Dobson, R. and Straume, T. (1982). Cancer Risks and neutron RBE’s from Hiroshima and Nagasaki. Report EUR 8084 en. Commission of the European Communities.

    Google Scholar 

  23. Curtis, S.B. (1995). Are radiation weighting factors relevant for protons and heavier charged particles? In U. Hagen, D. Harder, H. Jung, C. Streffer (eds.) Radiation Research, Congress Proceedings. pp. 161–164. Universitätsdruckerei H. Stürtz AG, Würzburg.

    Google Scholar 

  24. Ullrich, R.L. (1984). Tumor induction in Balb/c mice after fractionated or protracted exposures to fission-spectrum neutrons. Radial. Res. 97 587–597.

    Article  CAS  Google Scholar 

  25. Vogel, H.H. and Dickson, H.W. (1982). Mammary neoplasia in Sprague-Dawley rats following aute and protracted irradiation. In J.J. Broerse and G.B. Gerber (eds.) Neutron Carcinogenesis. pp. 135–154. Commission of the European Communities, Luxembourg.

    Google Scholar 

  26. Lundgren, D.L., Gillett, N.A., Hahn, F.F., Griffith, W.C. and McClellan, R.O. (1987). Effects of protraction of the cc-dose to the lungs of mice by repeated inhalation exposure to aerosols of239PuO2. Radiat. Res. 111, 201–224.

    Article  CAS  Google Scholar 

  27. Little, J.B., Kennedy, A.R. and McGandy, R.N. (1985). Effects of dose rate on the induction of experimental lung cancer in hamsters by a radiation. Radial. Res. 103 293–299.

    Article  CAS  Google Scholar 

  28. NRPB (1995). Risk of Radiation-Induced Cancer at Low Dose and Low Dose Rates for Radiation Protection Purposes. Chilton, Didcot.

    Google Scholar 

  29. IRAA (1996). International Radiobiology Archives of Long-Term Animal Studies.

    Google Scholar 

  30. Storer, J.B., Mitchell, T.J. and Fry, R.J.M. (1988). Extrapolation of the relative risk of radiogenic neoplasms across mouse strains and to man. Radiat. Res. 114 331–353.

    Article  CAS  Google Scholar 

  31. Covelli, V., Coppola, M., DiMajo, V., Rebessi, S. and Bassani, B. (1988). Tumor induction and life shortening in BC3F1 female mice at low doses of fast neutrons and X rays. Radial. Res. 113 362–374.

    Article  CAS  Google Scholar 

  32. Bartstra, R.W., Bentvelzen, P.A.J., Zoetelief, J., Mulder, A.H., Broerse, J.J. and Bekkum, D.W. van. (1998) Induction of mammary tumours in rats after single dose gamma irradiation at different ages. Radiat. Res. 150 442–450

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Broerse, J.J. (1999). Radiation Induced Cancer in Animals. In: Baumstark-Khan, C., Kozubek, S., Horneck, G. (eds) Fundamentals for the Assessment of Risks from Environmental Radiation. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4585-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4585-5_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5668-4

  • Online ISBN: 978-94-011-4585-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics