Skip to main content

Part of the book series: NATO Science Series ((ASEN2,volume 55))

  • 293 Accesses

Abstract

Although a risk assessment based on extrapolation of risk from high-dose studies to the low-dose region gives the appearance of a relatively precise estimate of low-dose risk, in fact knowledge is required about the biological mechanisms involved before one can derive an appropriate extrapolation model.

To avoid this problem, one strategy is to attempt to assess risk from studies of populations with relatively low radiation exposures. This superficially appealing approach has distinct weaknesses which must be considered. First, the precision of the estimates (i.e., the narrowness of the confidence interval) is very limited with most low-dose data. Two corollaries to the lack of precision are that the sample size needed to detect an effect will be extremely large, and that the statistical power to detect an effect or a non-zero dose-response regression slope will often be limited. The lack of statistical power also means that if one should detect a “statistically significant” effect, the estimated magnitude of that effect is likely to be seriously biased on the high side.

Another problem with low-dose studies is that the magnitude of subtle biases or confounding in the data set may well be greater than the magnitude of the expected effect. This confounding can either mask a true effect or yield false-positive findings, so there is little certainty about the results.

In general, one can hope to obtain meaningful measures of risk from low-dose studies only if the number of persons studied is very large, as may be achieved by a pooling of studies. It is recommended that studies be developed studies that address gaps in our knowledge about the effects of ionizing radiation exposure, rather than focusing primarily on low-dose studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pierce, D.A., Preston, D., Stram, D. and Vaeth, M. (1991): Allowing for dose-estimation errors for the A-bomb survivor data. J. Radial. Res. (Japan) 32 (Suppl), 108–121.

    Google Scholar 

  2. UNSCEAR (1994): Sources and Effects of Ionizing Radiation (Annex A: Epidemiological studies of radiation carcinogenesis). In: United Nations Scientific Committee on the Effects of Atomic Radiation, 272 pp. New York: United Nations.

    Google Scholar 

  3. Shore, R., Albert, R., Reed, M., Harley, N. and Pasternack, B. (1984): Skin cancer incidence among children irradiated for ringworm of the scalp. Radial. Res. 100, 192–204.

    Article  CAS  Google Scholar 

  4. Lubin, J., Boice, J., Edling, C., et al. (1995): Lung cancer in radon-exposed miners and estimation of risk from indoor exposure. J. Nat. Cancer Inst. 87, 817–827.

    Article  CAS  Google Scholar 

  5. Ron, E., Lubin, J., Shore, R., et al. (1995): Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiai. Res. 141, 259–277.

    Article  CAS  Google Scholar 

  6. Kellerer, A.M. and Barclay, D. (1992): Age dependencies in the modelling of radiation carcinogenesis. Radiai. Protect. Dosim. 41, 273–281.

    Google Scholar 

  7. Fry, R. and Ullrich, R. (1986): Combined effects of radiation and other agents. In: Radiation Carcinogenesis, eds. Upton, A., Albert, R., Burns, F. and Shore, R., pp. 437–454. New York: Elsevier.

    Google Scholar 

  8. Land, C.E. (1980): Estimating cancer risks from low doses of ionizing radiation. Science 209, 1197–1203.

    Article  CAS  Google Scholar 

  9. Shore, R.E. (1995): Epidemiological issues related to dose reconstruction. In: Environmental Dose Reconstruction and Risk Implications, ed. Till, J.E., pp. 245–260. Bethesda, MD: NCRP (National Council on Radiation Protection and Measurements).

    Google Scholar 

  10. Ashby, J., Doerrer, N., Flamm, W., et al. (1990): A scheme for classifying carcinogens. Regul. Toxicol. Pharmacol. 12, 270–295.

    Article  CAS  Google Scholar 

  11. Frigerio, N. and Stowe, R. (1983): Carcinogenic and genetic hazard from background radiation. In: International Symposium on the Biological Effects of Low-level Radiation with special regard to Stochastic and Non-stochastic effects, pp. 385–391. Vienna: IAEA.

    Google Scholar 

  12. Nambi, K.S. and Soman, S. (1987): Environmental radiation and cancer in India. Health Phys. 52, 653–657.

    Article  CAS  Google Scholar 

  13. Johnson, C.J. (1987): Cancer incidence patterns in the Denver metropolitan area in relation to the Rocky Flats plant. Ant J. Epidemiot. 126, 153–155.

    CAS  Google Scholar 

  14. Jablon, S., Hrubec, Z. and Boice, J. (1991): Cancer in populations living near nuclear facilities. J. Ant Med. Assoc. 265, 1403–1408.

    CAS  Google Scholar 

  15. Cohen, B.L. (1995): Test of the linear-no threshold theory of radiation carcinogenesis for inhaled radon decay products. Health Phys. 68, 157–174.

    Article  CAS  Google Scholar 

  16. Harjulehto, T., Rahola, T., Suomela, M., Arvela, H. and Saxen, L. (1991): Pregnancy outcome in Finland after the Chernobyl accident. Biomed. Pharmacother 45, 263–266.

    Article  CAS  Google Scholar 

  17. Luning, G., Scheer, J., Schmidt, M. and Ziggel, H. (1989): Early infant mortality in West Germany before and after Chernobyl. Lancet 2, 1081–1083. 14

    Article  CAS  Google Scholar 

  18. Greenland, S. and Morgenstern, H. (1989): Ecological bias, confounding, and effect modification. Int. J. Epidemiol. 18, 269–274.

    Article  CAS  Google Scholar 

  19. Greenland, S. and Robins, J. (1994): Ecologic studies--biases, misconceptions, and counterexamples. Am. J. Epidemiol. 139, 747–760.

    CAS  Google Scholar 

  20. Piantadosi, S. (1994): Invited commentary: Ecologic biases. Am. J Epidemiol. 139, 761–764.

    CAS  Google Scholar 

  21. Najarian, T. and Colton, T. (1978): Mortality from leukaemia and cancer in shipyard nuclear workers. Lancet 1, 1018–1020.

    Article  CAS  Google Scholar 

  22. Rinsky, R.A., Zumwalde, R., Waxweiler, R., et al. (1981): Cancer mortality at a naval nuclear shipyard. Lancet 1, 231–235.

    Article  CAS  Google Scholar 

  23. Stern, F., Waxweiler, R., Beaumont, J., et al. (1986): A case-control study of leukemia at a naval nuclear shipyard. Am. J. Epidemiol. 123, 980–992.

    CAS  Google Scholar 

  24. Stewart, A., Pennybacker, W. and Barber, R. (1962): Adult leukaemias and diagnostic x rays. Br. Med. J. 2, 882–890.

    Article  CAS  Google Scholar 

  25. Gibson, R., Graham, S., Lilienfeld, A., et al. (1972): Irradiation in the epidemiology of leukemia among adults. J. Nat. Cancerinst. 48, 301–311.

    CAS  Google Scholar 

  26. Preston-Martin, S., Thomas, D., Yu, M. and Henderson, B. (1989): Diagnostic radiography as a risk factor for chronic myeloid and monocytic leukaemia (CML). Br. J. Cancer 59, 639–644.

    Article  CAS  Google Scholar 

  27. Preston-Martin, S., Henderson, B. and Bernstein, L. (1985): Medical and dental x-rays as risk factors for recently diagnosed tumors of the head. Monogr. Nat. CancerInst. 69, 175–179.

    CAS  Google Scholar 

  28. Graham, S., Levin, M., Lilienfeld, A., et al. (1963): Methodological problems and design of the tristate leukemia survey. Ann. N.Y. Acad. Sci. 107, 557–569.

    Article  Google Scholar 

  29. Preston-Martin, S., Bernstein, L., Maldonado, A., Henderson, B. and White, S. (1985): A dental x-ray validation study: comparison of information from patient interviews and dental charts. Am. J.. Epidemiol 121, 430–439.

    Google Scholar 

  30. Boice, J.D., Morin, M., Glass, A., et al. (1991): Diagnostic x-ray procedures and risk of leukemia, lymphoma, and multiple myeloma. J Am. Med. Assoc. 265, 1290–1294.

    Article  Google Scholar 

  31. Inskip, P., Ekbom, A., Galanti, M., Grimelius, L. and Boice, J. (1995): Medical diagnostic x rays and thyroid cancer. J. Nat. Cancerinst. 87, 1613–1621.

    Article  CAS  Google Scholar 

  32. ICRP (1991): 1990 Recommendations of the International Commission on Radiological Protection. Ann. ICRP 21 (Publication 60), 1–201.

    Google Scholar 

  33. Cardis, E., Gilbert, E., Carpenter, L., et al. (1995): Effects of low doses and low dose rates of external ionizing radiation: cancer mortality among nuclear industry workers in three countries. Radial. Res. 142, 117–132.

    Article  CAS  Google Scholar 

  34. Saenger, E.L., Thomas, G. and Tompkins, E. (1968): Incidence of leukemia following treatment of hyperthyroidism. J. Am. Med. Assoc. 205, 147–154.

    Article  Google Scholar 

  35. Holm, L., Hall, P., Wiklund, K., et al. (1991): Cancer risk after iodine-131 therapy for hyperthyroidism. J. Nat. Cancer Inst. 83, 1072–1077.

    Article  CAS  Google Scholar 

  36. Holm, L. (1991): Cancer risks after diagnostic doses of 1311 with special reference to thyroid cancer. Cancer Detect. Prey. 15, 27–30.

    CAS  Google Scholar 

  37. Stevens, W., Thomas, D., Lyon, J., et al. (1990): Leukemia in Utah and radioactive fallout from the Nevada test site. J. Am. Med. Assoc. 264, 585–591.

    Article  CAS  Google Scholar 

  38. Kossenko, M. (1996): Cancer mortality among Techa River residents and their offspring. Health Phys. 71, 77–82.

    Article  CAS  Google Scholar 

  39. Wang, J.X., Inskip, P., Boice, J., Jr. and Li, B. (1990): Cancer incidence among medical diagnostic X-ray workers in China, 1950 to 1985. Int. J. Cancer 45, 889–895.

    Article  CAS  Google Scholar 

  40. Charpentier, P., Ostfeld, A., Hadjimichael, O. and Hester, R. (1993): The mortality of US nuclear submariners, 1969–1982. J. Occup. Med. 35, 501–509.

    CAS  Google Scholar 

  41. Cragle, D.L., Robertson-DeMers, K. and Watkins, J.P. (1997): Mortality among workers at a nuclear fuels production facility: the Savannah River Site, 1952–1986. In Press.

    Google Scholar 

  42. Pierce, D., Shimizu, Y., Preston, D., Vaeth, M. and Mabuchi, K. (1996): Studies of the mortality of atomic bomb survivors. Report 12, Part 1. Cancer: 1950–1990. Radial. Res. 146, 1–27.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shore, R.E. (1999). Assessing Risk at Low Doses. In: Baumstark-Khan, C., Kozubek, S., Horneck, G. (eds) Fundamentals for the Assessment of Risks from Environmental Radiation. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4585-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4585-5_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5668-4

  • Online ISBN: 978-94-011-4585-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics