Skip to main content

Part of the book series: NATO Science Series ((ASEN2,volume 55))

Abstract

Relevant structural and mechanistic information has been gained during the last decade on the main photo-and radiation-induced damage to isolated DNA [for recent comprehensive reviews, see 1-7]. This was mostly achieved using nucleosides and short oligonucleotides as DNA model compounds. Extrapolation to cellular DNA is still a matter of debate, particularly for ionizing radiation. In fact, there is still a paucity of relevant and accurate data on the formation of radiation-induced base damage to DNA in cells and tissues. In addition, there is a lack of both qualitative and quantitative information on the spectrum of UV-B-induced DNA lesions. This may be accounted for by the still challenging analytical problem associated with the measurement of photo-and radiation-induced damage to DNA [8]. In this respect, it should be mentioned that most of the determination of radiation-induced base damage using the gas-chromatographymass spectrometry (GC-MS) assay developed initially by Dizdaroglu et al. [9-11], has to be reassessed. This also applies to the bulk of DNA repair studies of radiation-induced base damage where the specificity of recognition of several DNA-glycosylases was evaluated using the above GC-MS method. Emphasis was placed in this survey on mechanistic aspects of the photo-and radiation-induced decomposition of the base moieties of DNA and model compounds that recently became available. These mostly include the reaction pathways associated with exposure of the guanine (Gua) base of DNA and related model systems to both the direct and indirect effects of ionizing radiation. Relevant information is also provided on both the type I and type II photosensitized reactions of the guanine moiety of DNA which are involved in the effects of the UV-A component of solar light [7]. As a second major topic to be addressed, the main available methods aimed at measuring individual damage within DNA and isolated cells are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cadet and Vigny, P. (1990). The photochemistry of nucleic acids. In: Bioorganic Photochemistry, H. Morrison, ed. (New York: Wiley and Sons) pp. 1–272.

    Google Scholar 

  2. Cadet, J., Anselmino, C., Douki, T., and Voituriez, L. (1992). Photochemistry of nucleic acids in cells. J. Photochem Photobiol. B 15, 277–292.

    Article  CAS  Google Scholar 

  3. Cadet, J. (1994). DNA damage caused by oxidation, deamination, ultraviolet radiation and photo-excited psoralen. In: DNA adducts: Identification and biological significance, K. Hemminki, A. Dipple, D.G.E. Shuker, F.F. Kadlubar, D. Segerbäck and H. Bartsch., eds. (Lyon: IARC Scientific Publications) No. 125, pp. 245–276.

    Google Scholar 

  4. Taylor, J.-S. (1994). Unraveling the molecular pathway from sunlight to skin cancer. Acc. Chem. Res. 27, 76–82.

    Article  CAS  Google Scholar 

  5. Taylor, J.-S. (1995). DNA, sunlight and skin cancer. Pure Appl. Chem. 67, 183–190.

    Article  CAS  Google Scholar 

  6. Cadet, J., Berger, M., Douki, T., and Ravanat, J.-L. (1997) Oxidative damage to DNA: Formation, measurement and biological significance. Reviews Physiol. Biochem. Pharmacol., 131, 1–87.

    CAS  Google Scholar 

  7. Cadet, J., Berger, M., Douki, T., Morin, B., Raoul, S., Ravanat, J.-L., and Spinelli, S. (1997) Effects of UV and visible radiation on DNA - Final base damage. Biol. Chem.,378, 1275–1286.

    CAS  Google Scholar 

  8. Cadet J., and Weinfeld, M. (1993). Detecting DNA damage. Anal. Chem., 65, 675A–682A.

    CAS  Google Scholar 

  9. Dizdaroglu, M. (1991) Chemical determination of free radical-induced damage to DNA. Free RadicalBiol. Med, 10, 225–242.

    Article  CAS  Google Scholar 

  10. Halliwell, B., and Dizdaroglu, M. (1992). The measurement of oxidative damage to DNA by HPLC and GC/MS techniques. Free Radic. Res. Commun., 16, 15–28.

    Google Scholar 

  11. Dizdaroglu, M. (1993). Quantitative determination of oxidative base damage in DNA by stable isotope-dilution mass spectrometry. FEBS Lett., 315, 1–6.

    Article  CAS  Google Scholar 

  12. Douki, T., Zalizniak, T., and Cadet, J. (1997). Far-UV induced dimeric photoproducts in short oligonucleotides: sequence effects. Photochem. Photobiol., 66, 171–179.

    Article  CAS  Google Scholar 

  13. Sage E. (1993). Distribution and repair of photolesions in DNA: genetic consequences and the role of sequence context. Photochem. Photobiol., 57, 163–174.

    Article  CAS  Google Scholar 

  14. Douki, T., Voituriez, L. and Cadet, J. (1995). Measurement of pyrimidine(6–4)pyrimidone photo-products in DNA by a mild hydrolysis-HPLC-fluorescence assay. Chem. Res. Toxicol. 8, 244–253.

    Article  CAS  Google Scholar 

  15. Douki, T., and Cadet, J. (1994). Formation of cyclobutane dimers and (6–4) photoproducts upon far-UV photolysis of 5-methylcytosine containing dinucleoside monophosphates. Biochemistry 33, 11942–11950.

    Article  CAS  Google Scholar 

  16. Zhao, X., Kao, J.L.-F., and Taylor, J.-S. (1995). Preparation and characterization of a deoxyoligonucleotide 19-mer containing a site-specific thymidylyl-(3’,5’)-deoxyadenosine photoproduct. Biochemistry 34, 1386–1392.

    Article  CAS  Google Scholar 

  17. Zhang, X., Rosenstein, B.S., Wang, Y., Lebwohl, M., Mitchell, D.M., and Wei, H. (1997). Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem. Photobiol. 65, 119–124.

    Article  CAS  Google Scholar 

  18. Wei, H., Cai, Q., and Rahn, R.O. (1996). Inhibition of UV light-and Fenton reaction-induced oxidative DNA damage by the soybean isoflavone genistein. Carcinogenesis 12, 73–77.

    Article  Google Scholar 

  19. Wood, P.D., and Redmond, R.W. (1996). Triplet state interactions between nucleic acid bases in solution at room temperature: intermolecular energy and electron transfer. J. Am. Chem. Soc. 118, 4256–4263.

    Article  CAS  Google Scholar 

  20. Mohammad, T., and Morrison, H. (1996). Evidence for the photosensitized formation of singlet oxygen by UV-B irradiation of 2’-deoxyguanosine 5’-monophosphate. J. Am. Chem. Soc. 118, 1221–1222.

    Article  CAS  Google Scholar 

  21. Bishop, S.M., Malone, M., Phillips, D., Parker, A.W., and Symons, M.C.R. (1994). Singlet oxygen sensitisation by excited state DNA. J. Chem. Soc. Chem. Commun. 871–872.

    Google Scholar 

  22. Spassky, A., and Angelov, D. (1997). Influence of the local helical conformation on the guanine modifications generated from one-electron oxidation. Biochemistry,36, 6571–6576

    Article  CAS  Google Scholar 

  23. Angelov, D., Spassky, A., Berger M., and Cadet J. (1997). High-intensity UV laser photolysis of DNA and purine 2’-deoxyribonucleosides: formation of 8-oxopurine damage and oligonucleotide strand cleavage as revealed by HPLC and gel electrophoresis studies. J. Am. Chem. Soc., 119, 11373–11380

    Article  CAS  Google Scholar 

  24. Cadet, J., Berger, M., Buchko, G.W., Joshi, P.C., Raoul, S., and Ravanat, J.-L. (1994). 2,2Diamino-4-[(3,5-di-O-acetyl-2-deoxy-(3-D-erythro-pentofuranosyl) amino]-5-(2H)-oxazolone: a novel and predominant radical oxidation product of 3’,5’-di-O-acetyl-2’-deoxyguanosine. J Am. Chem. Soc. 116, 7403–7404.

    Article  CAS  Google Scholar 

  25. Buchko, G.W., Cadet, J., Morin, B., and Weinfeld, M. (1995). Photooxidation of d(TpG) by riboflavin and methylene blue. Isolation and characterization of thymidylyl-(3’,5’)-2-amino-54(2deoxy-(3-D-erythro-pentofuranosyl)amino1–4H-imidazol-4-one, and its primary decomposition product, thymidylyl-(3’,5’)-2-diamino-4-[(2-deoxy-3-D-erythro-pentofuranosyl)amino]-(2H)- oxazolone. Nucleic Acids Res., 19, 3954–3961.

    Article  Google Scholar 

  26. Raoul, S., Berger, M., Buchko, G.W., Joshi, P.C., Morin, B., Weinfeld, M., and Cadet, J. (1996). ‘H, “C and 15N NMR analysis and chemical features of the two main radical oxidation products of 2’-deoxyguanosine: Oxazolone and imidazolone nucleosides. J. Chem. Soc. Perkin Trans. 2, 371–381.

    Google Scholar 

  27. Kasai, H., Yamaizumi, Z., Berger, M., and Cadet, J. (1992). Photosensitized formation of 7,8dihydro-8-oxo-2’-deoxyguanosine (8-hydroxy-2’-deoxyguanosine) in DNA by riboflavin. A non singlet oxygen mediated reaction. J. Am. Chem. Soc. 114, 9692–9694.

    Article  CAS  Google Scholar 

  28. Sheu, C., and Foote, C.S. (1993). Endoperoxide formation in a guanosine derivative. J. Am. Chem. Soc. 115, 10446–10447.

    Article  CAS  Google Scholar 

  29. Ravanat, J.-L., Berger, M., Benard, F., Langlois, R., Ouellet, R., van Lier, J.E., and Cadet, J. (1992). Phthalocyanine and naphthalocyanine photosensitized oxidation of 2’-deoxyguanosine: distinct type I and type II products. Photochem. Photobiol., 55, 809–814.

    Article  CAS  Google Scholar 

  30. Buchko, G.W., Cadet, J., Berger, M., Ravanat, J.L. (1992) Photooxidation of d(TpG) by phthalocyanines and riboflavin. Isolation and characterization of dinucleoside monophosphates containing the 4R* and the 4S* diastereoisomers of 4,8-dihydro-4-hydroxy-8-oxo-2’-deoxyguanosine. Nucleic Acids Res., 20, 4847–4851

    Article  CAS  Google Scholar 

  31. Ravanat, J.-L. and Cadet. J. (1995). Reaction of singlet oxygen with 2’-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem. Res. Toxicol. 8, 379–388.

    Article  CAS  Google Scholar 

  32. Raoul S. and Cadet, J. (1996). Photosensitized reaction of 8-oxo-7,8-dihydro-2’-deoxyguanosine: Identification of 1-(2-deoxy-3-D-erythro-pentofuranosyl)-cyanuric acid as the major singlet oxygen oxidation product. J. Am. Chem. Soc. 118, 1892–1898.

    Article  CAS  Google Scholar 

  33. Devasagayam, T.P.A., Steenken, S., Obendorf, M.S.W., Schulz, W.A., and Sies, H. (1991). Formation of 8-hydroxy(deoxy)guanosine and generation of strand breaks at guanine residues in DNA by singlet oxygen. Biochemistry 30, 6283–6289

    Article  CAS  Google Scholar 

  34. Cadet, J., Ravanat, J.-L., Buchko G.W., Yeo, H.C., and Ames, B.N. (1994). Singlet oxygen DNA damage: Chromatographic and mass spectrometric analysis of damage products. Methods Enzym,234, 79–88.

    Article  CAS  Google Scholar 

  35. Sheu, C., and Foote, C.S. (1995) Reactivity toward singlet oxygen of a 7,8-dihydro-8oxoguanosine (“8-hydroxyguanosine”) formed by photooxidation of a guanosine derivative. J. Am. Chem. Soc., 117, 6439–6442.

    Article  CAS  Google Scholar 

  36. Fischer-Nielsen, A., Loft, S., and Jensen, K.G. (1993). Effect of ascorbate and 5-aminosalicylic acid on light-induced deoxyguanosine formation in V79 Chinese hamster cells. Carcinogenesis, 14,2431–2433.

    Article  CAS  Google Scholar 

  37. Rosen, J.E., Prahalad, A.K., and Williams, G.M. (1996). 8-Oxodeoxyguanosine formation in the DNA of cultured cells after exposure to H2O2 alone or with UV-B or UV-A irradiation. Photochem. Photobiol. 64, 117–122.

    Article  CAS  Google Scholar 

  38. Warner, W.G., and Wei, R.R. (1997). In vitro photooxidation of nucleic acids by ultraviolet A radiation. Photochem. Photobiol. 65, 560–563.

    Article  Google Scholar 

  39. Zhang, X., Rosenstein, B.S., Wang, Y., Lebwohl, M., Mitchell, D.M., and Wei, H. (1997). Induction of 8-oxo-7,8-dihydro-2’-deoxyguanosine by ultraviolet radiation in calf thymus DNA and HeLa cells. Photochem Photobiol., 65, 119–124.

    Article  CAS  Google Scholar 

  40. Kvam E., and Tyrrell, R.M. (1997) Artificial background and induced levels of oxidative base damage in DNA from human cells. Carcinogenesis,18, 2281–2283.

    Article  CAS  Google Scholar 

  41. Epe, B (1995). DNA damage profiles induced by oxidizing agents. Reviews Physiol. Biochent Pharmacol. 127, 223–233.

    Article  Google Scholar 

  42. Epe, B., and Hegler, J. (1994). Oxidative DNA damage: endonuclease fingerprint. Methods Enzymol. 234, 122–131.

    Article  CAS  Google Scholar 

  43. Kielbassa, C., Roza, L., and Epe, B. (1997). Wavelength dependence of oxidative DNA damage induced by UV and visible light. Carcinogenesis 18, 811–816.

    Article  CAS  Google Scholar 

  44. Pflaum, M., Boiteux, S. and Epe, B. (1994). Visible light generates oxidative DNA base modifications in high excess of strand breaks in mammalian cells. Carcinogenesis 15, 297–300.

    Article  CAS  Google Scholar 

  45. Boiteux S. (1993). Properties and biological functions of the NTH and FPG proteins of Escherichia coli: two glycosylases that repair oxidative damage in DNA. J Photochem Photobiol B: Biol: 19, 87–96.

    Article  CAS  Google Scholar 

  46. Tchou, J., Bodepudi, V., Shibutani, S., Antoshechkin, I., Miller, J., Grollman, A.P., and Johnson, F. (1994). Substrate specificity of Fpg protein. JBiol. Chem., 269, 15318–15324.

    CAS  Google Scholar 

  47. Steenken, S. (1989). Purine bases, nucleosides, and nucleotides: aqueous solution redox chemistry and transformation reactions of their radical cations and é and OH adducts. Chem. Rev. 89, 503–520.

    Article  CAS  Google Scholar 

  48. Hall, D.B., Holmlin, R.E., and Barton, J.K. (1996). Oxidative DNA damage through long-range electron transfer. Nature, 382, 731–735.

    Article  CAS  Google Scholar 

  49. Ward, J.-F. (1994). The complexity of DNA damage: relevance to biological consequences. Int. J. Radiai. Biol., 66, 427–432.

    Article  CAS  Google Scholar 

  50. Cadet, J., and Berger, M. (1985). Radiation-induced decomposition of purine bases within DNA and related model compounds. Int. J. Radiai. Biol., 74, 127–143.

    Article  Google Scholar 

  51. Box, H.C., Budzinski, E.D., Dawidzik, J.B., Gobey, J.S., and Freund, H.G. (1997). Free radical-induced tandem base damage in DNA oligomers. Free Radical Biol. Biol., 23, 1021–1030.

    Article  CAS  Google Scholar 

  52. Delatour, T., Douki, T., Gasparutto, D., and Cadet, J. (1997). Isolation and charactrization of a clustered lesion obtained by photosensitization of TpdG. Photochem. Photobiol., 65s, 22–23.

    Google Scholar 

  53. Collins, A.R., Dusinska, M., Gedik, C.M., and Stetina, R. (1996). Oxidative damage to DNA: do we have a reliable biomarker? Environ. Health Perspect. 104, 465–469.

    CAS  Google Scholar 

  54. Cadet, J., Douki, T., and Ravanat, J.-L. (1997). Artifacts associated with the measurement of oxidized DNA bases. Environ. Health Perspect., 105, 1034–1039.

    Article  CAS  Google Scholar 

  55. Ravanat, J.-L, Turesky, R.J., Gremaud, E., Trudel, L.J., and Stadler, R.H. (1995). Determination of 8-oxoguanine in DNA by gas chromatography-mass spectrometry and HPLC-electrochemical detection. Overestimation of the background level of the oxidized base by the gas chromatography mass spectrometry assay. Chem. Res. Toxicol. 8, 1039–1045.

    Article  CAS  Google Scholar 

  56. Douki, T., Delatour, T., Bianchini, F., and Cadet, J. (1996a). Observation and prevention of an artefactual formation of oxidized DNA bases and nucleosides in the GC/EIMS method. Carcinogenesis. 17, 347–353.

    Article  CAS  Google Scholar 

  57. Devanaboyina, U.-s., and Gupta, R.C. (1996). Sensitive detection of 8-hydroxy-2’-deoxyguanosine in DNA by 32P-postlabeling assay and the basal levels in rat tissues. Carcinogenesis, 17, 917–924.

    Article  CAS  Google Scholar 

  58. Musarrat, J., and Wani, A.A. (1994) Quantitative immunolo-analysis of promutagenic 8-hydroxy2’-deoxyguanosine in oxidized DNA. Carcinogenesis,15, 2037–2043.

    Article  CAS  Google Scholar 

  59. Mouret, J.-F., Odin, F., Polverelli, M., and Cadet, J. (1990). 32P-Postlabeling measurement of adenine N-1-oxide in cellular DNA exposed to hydrogen peroxide. Chem. Res. Toxicol., 3, 102–110

    Article  CAS  Google Scholar 

  60. Douki, T., Delatour, T., Paganon, F., and Cadet, J. (1996b). Measurement of oxidative damage at pyrimidine bases in y-irradiated DNA. Chem. Res. Toxicol. 9, 1145–1151.

    Article  CAS  Google Scholar 

  61. Douki, T., Martini, R., Ravanat, J.-L., Turesky, R.J., and Cadet, J. (1997). Measurement of 2,6diamino-4-hydroxy-5-formamidopyrimidine and 8-oxo-7,8-dihydroguanine in gamma irradiated DNA. Carcinogenesis 18, 2385–2391.

    Article  CAS  Google Scholar 

  62. Dusinska, M., and Collins, A. (1996). Detection of oxidised purines and UV-induced photoproducts in DNA of single cells by inclusion of lesion-specific enzymes in the comet assay. ALTA, 24, 405–411.

    Google Scholar 

  63. Sauvaigo, S., Signorini, N., Emonet, N., Richard, M.-J., and Cadet, J. (1997). Immunofluorescent detection of cyclobutane pyrimidine dimers by a modification of the comet assay. Mutat. Res.,379s, 134.

    Google Scholar 

  64. Roza, L., van der Wulp, K.J.M., MacFarlane, S.J., Lohman, P.H.M., and Baan, R.A. (1988). Detection of cyclobutane thymine dimers in DNA of human cells with monoclonal antibodies raised against a thymine dimer-containing tetranucleotide. Photochem. Photobiol., 48, 627–633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cadet, J. et al. (1999). Radiation Chemistry of DNA. In: Baumstark-Khan, C., Kozubek, S., Horneck, G. (eds) Fundamentals for the Assessment of Risks from Environmental Radiation. NATO Science Series, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4585-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4585-5_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5668-4

  • Online ISBN: 978-94-011-4585-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics