Skip to main content

Hans Primas and Nuclear Magnetic Resonance

  • Chapter
On Quanta, Mind and Matter

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 102))

Abstract

Hans Primas in front of a cathode ray oscilloscope (Fig. 1), designing electronic circuitry? Hans Primas supervising an electronic design laboratory in order to build from scratch a nuclear magnetic resonance (NMR) spectrometer (Fig. 2)? — Inconceivable! We might ask whether we look at a stuntman. — No, indeed, it is himself personally. And those who met Hans Primas forty years ago will not be astonished at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew E.R. (1956): Nuclear Magnetic Resonance (Cambridge University Press, Cambridge).

    MATH  Google Scholar 

  • Arndt R. (1962): Kernresonanzspektroskopische Untersuchungen einiger Cyclane im festen Zustand. Dissertation No. 3158, ETH Zürich.

    Google Scholar 

  • Baker E.B. and Burd L.W. (1957): High stability nuclear magnetic resonance spectrograph. Rev. Sci. Instr. 28, 313–321.

    Article  ADS  Google Scholar 

  • Bloch F., Hansen W.W., and Packard M. (1946): Nuclear induction. Phys. Rev. 69, 127.

    Article  ADS  Google Scholar 

  • Blümich B. and Ziessow D. (1983a): Nonlinear noise analysis in nuclear magnetic resonance spectroscopy. 1D, 2D, and 3D spectra. J. Chem. Phys. 78, 1059–1076.

    Article  ADS  Google Scholar 

  • Blümich B. and Ziessow D. (1983b): Multidimensional spectroscopy I. Perturbation theory. Mol. Phys. 48, 955–968.

    Article  ADS  Google Scholar 

  • Bommer P. (1963): Beiträge zur Bestimmung von Chemical Shifts, Additivität des Chemical Shifts, Doppelresonanz. Dissertation No. 3354, ETH Zürich.

    Google Scholar 

  • Born M. and Jordan P. (1930): Elementare Quantenmechanik (Springer, Berlin).

    MATH  Google Scholar 

  • Courant R. and Hilbert D. (1953): Methods of Mathematical Physics (Interscience, New York).

    Google Scholar 

  • Crawford J.A. (1958): An alternative method of quantization: the existence of classical fields. Nuovo Cim. 10, 698–713.

    Article  MathSciNet  Google Scholar 

  • Davenport W.B. and Root W.L. (1958): An Introduction to the Theory of Random Signals and Noise (McGraw-Hill, New York).

    MATH  Google Scholar 

  • Dickinson W.C. (1950): Dependence of the F 19 nuclear resonance position on chemical compound. Phys. Rev. 77, 736–737.

    Article  ADS  Google Scholar 

  • Ernst R.R. (1962): I. Kernresonanz-Spektroskopie mit stochastischen Hochfrequenzfeldern. II. Zur Konstruktion eines optimalen Kernresonanz-Messkopfes. Dissertation No. 3300, ETH Zürich.

    Google Scholar 

  • Ernst R.R. (1966): Nuclear magnetic double resonance with an incoherent radio-frequency field. J. Chem. Phys. 45, 3845–3861.

    Article  ADS  Google Scholar 

  • Ernst R.R. (1970): Magnetic resonance with stochastic excitation. J. Magn. Reson. 3, 10–27.

    Google Scholar 

  • Ernst R.R. and Anderson W.A. (1966): Application of Fourier transform spectroscopy to magnetic resonance. Rev. Sci. Instr. 37, 93–102.

    Article  ADS  Google Scholar 

  • Ernst R.R., Bodenhausen G., and Wokaun A. (1987): Principles of NMR in One and Two Dimensions (Clarendon Press, Oxford).

    Google Scholar 

  • Fano U. (1957): Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74–93.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Gabillard R. (1951a): Comtes Rendues 232, 1477–1479.

    Google Scholar 

  • Gabillard R. (1951b): Comtes Rendues 233, 39–41.

    Google Scholar 

  • Gutowsky H.S. and McCall D.W. (1951): Nuclear magnetic resonance fine structure in liquids. Phys. Rev. 82, 748–749.

    Article  ADS  Google Scholar 

  • Gutowsky M.S., McCall D.W., McGarvey B.R., and Meyer L.H. (1952): Electron distribution in benzene derivatives. J. Am. Chem. Soc. 74, 4809–4817.

    Article  Google Scholar 

  • Halbach K. (1954): Über eine neue Methode zur Messung von Relaxationszeiten und über den Spin von Cr53. Helv. Phys. Acta 27, 259–282.

    Google Scholar 

  • Heitier W. (1957): The Quantum Theory of Radiation (Clarendon Press, Oxford).

    Google Scholar 

  • Herzberg G. (1945): Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York).

    Google Scholar 

  • Herzberg G. (1950): Spectra of Diatomic Molecules (Van Nostrand, New York).

    Google Scholar 

  • Herzberg G. (1966): Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand, New York).

    Google Scholar 

  • Huber A. (1969): Eine Apparatur zur Präzisionsmessung von Resonanzverschiebungen in der hochauflösenden magnetischen Kernresonanz-Spektroskopie. Dissertation No. 4232, ETH Zürich.

    Google Scholar 

  • Jackman L.M. and Cotton F.A. (1975): Dynamic NMR Spectroscopy (Academic Press, New York).

    Google Scholar 

  • Jeener J. (1982): Super Operators in magnetic resonance. Adv. Magn. Reson. 10, 1–51.

    Google Scholar 

  • Kaiser R. (1970): Coherent spectrometry with noise signals. J. Magn. Reson. 3, 28–43.

    Google Scholar 

  • Kaplan J.I. and Fraenkel G. (1980): NMR of Chemically Exchanging Systems (Academic Press, New York).

    Google Scholar 

  • Kubo R. (1957a): Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan 12, 570–586.

    Article  MathSciNet  ADS  Google Scholar 

  • Kubo R. (1957b): Stochastic theory of magnetic resonance. Nuovo Cim. Suppl. X6, 1063–1080.

    Article  Google Scholar 

  • Kubo R. and Tomita K. (1954): A general theory of magnetic resonance absorption. J. Phys. Soc. Japan 9, 888–919.

    Article  ADS  Google Scholar 

  • Kumagai H. (1960): On a design of wide range magnet for cyclotron. Nucl. Instr. and Meth. 6, 213–216.

    Article  ADS  Google Scholar 

  • Kummer H. (1963a): Beitrag zur Analyse komplizierter Protonenresonanzspektren. Dissertation No. 3378, ETH Zürich.

    Google Scholar 

  • Kummer H. (1963b): Das Eindeutigkeitsproblem in der hochauflösenden Protonenresonanzspektroskopie. Helv. Phys. Acta 36, 901–936.

    Google Scholar 

  • Laning J.H. and Battin R.H. (1956): Random Processes in Automatic Control (McGraw-Hill, New York).

    Google Scholar 

  • Lösche A. (1957): Kerninduktion (VEB Deutscher Verlag der Wissenschaften, Berlin).

    Google Scholar 

  • Margenau H. and Murphy G.M. (1943): The Mathematics of Physics and Chemistry (Van Nostrand, New York).

    MATH  Google Scholar 

  • Proctor W.G. and Yu F.C. (1950): The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys. Rev. 77, 717.

    Article  ADS  Google Scholar 

  • Purcell E.M., Torrey H.C., and Pound R.V. (1946): Resonance absorption by nuclear magnetic moments. Phys. Rev. 69, 37–38.

    Article  ADS  Google Scholar 

  • Shoolery J.N. (1953): Correlation of proton magnetic resonance chemical shifts with electronegativities of substituents. J. Chem. Phys. 21, 1899–1900.

    Article  ADS  Google Scholar 

  • Smith S.A., Levante T.O., Meier B.H., and Ernst R.R. (1994): Computer simulations in magnetic resonance. An object-oriented programming approach. J. Magn. Reson. A106, 75–105.

    Google Scholar 

  • Valley G.E. and Wallman H. (1951): Vacuum Tube Amplifiers (McGraw-Hill, New York).

    Google Scholar 

  • Varian R. (1956): US Patent 3287629, filed Aug 29, 1956, issued Nov 22, 1966.

    Google Scholar 

  • Wiener N. (1949): Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications (MIT Press, Cambridge).

    MATH  Google Scholar 

  • Wiener N. (1958): Nonlinear Problems in Random Theory (Wiley, New York).

    MATH  Google Scholar 

  • Wigner E.P. (1959): Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (Academic Press, New York).

    MATH  Google Scholar 

Quoted articles by Primas, arranged in the sequence of their publication

  1. Osimitz F. and Primas H. (1950): Tüpfelreaktionen. Schweiz. Laboranten-Zeitung 7, 2–7.

    Google Scholar 

  2. Primas H., Lasman H., and Osimitz F. (1950): Moderne Vorschriften zur qualitativen Kationenanalyse. Schweiz. Laboranten-Zeitung 7, 98–114.

    Google Scholar 

  3. Primas H. and Günthard Hs.H. (1953): Die Infrarotspektren von Ketten-molekülen der Formel R’CO(CH“CH”)nCOR”. I. Rocking-und Twisting-Grundtöne. Helv. Chim. Acta 36, 1659–1670.

    Article  Google Scholar 

  4. Primas H. and Günthard Hs.H. (1953): Die Infrarotspektren von Kettenmolekülen der Formel R’CO(CH“CH”)nCOR”. II. Die Normalschwingungen des Symmetrietypus B u. Helv. Chim. Acta 36, 1791–1803.

    Article  Google Scholar 

  5. Primas H. and Günthard Hs.H. (1954): Spectres infrarouges de derivés carbonyliques du type R’CO(CH“CH”)nCOR” contenant plus de dix groupes méthyléniques. J. de Physique et le Radium 15, 209–211.

    Article  Google Scholar 

  6. Primas H. and Günthard Hs.H. (1954): Theorie der Form von Absorptionsbanden suspendierter Substanzen und deren Anwendung auf die Nujolmethode in der Infrarotspektroskopie. Helv. Chim. Acta 37, 360–374.

    Article  Google Scholar 

  7. Primas H. and Günthard Hs.H. (1955): Theorie der Intensitäten der Schwingungsspektren von Kettenmolekeln. I. Allgemeine Theorie der Berechnung von Intensitäten der Infrarotspektren von grossen Molekeln. Helv. Chim. Acta 38, 1254–1262.

    Article  Google Scholar 

  8. Primas H. and Günthard Hs.H. (1956): Theorie der Intensitäten der Schwingungsspektren von Kettenmolekeln. II. Zur Berechnung der Intensitäten der Infrarotspektren von freien Kettenmolekeln der Symmetrie C2h . Helv. Chim. Acta 39, 1182–1192.

    Article  Google Scholar 

  9. Günthard Hs.H. and Primas H. (1956): Zusammenhang von Graphentheorie und MO-Theorie von Molekeln mit Systemen konjugierter Bindungen. Helv. Chim. Acta 39, 1645–1653.

    Article  Google Scholar 

  10. Primas H. (1957): Ein Kernresonanzspektrograph mit hoher Auflösung. I. Theorie der Liniendeformation in der hochauflösenden Kernresonanzspektroskopie. Helv. Phys. Acta 30, 297–314.

    MATH  Google Scholar 

  11. Primas H. and Günthard Hs.H. (1957): Ein Kernresonanzspektrograph mit hoher Auflösung. IL Beschreibung der Apparatur. Helv. Phys. Acta 30, 315–330.

    Google Scholar 

  12. Primas H. and Günthard Hs.H. (1957): Herstellung sehr homogener axialsymmetrischer Magnetfelder. Helv. Phys. Acta 30, 331–346.

    Google Scholar 

  13. Primas H. and Günthard Hs.H. (1957): Field Stabilizer for High Resolution Nuclear Magnetic Resonance. Rev. Sci. Instrum. 28, 510–514.

    Article  ADS  Google Scholar 

  14. Primas H. and Günthard Hs.H. (1957): Hochauflösender Kernresonanzspektrograph. Chimia 11, 130–132.

    Google Scholar 

  15. Primas H., Frei K., and Günthard Hs.H. (1958): Protonenresonanzspektren einfacher cyclischer Aether und Ketone I. Helv. Chim. Acta 41, 35–38.

    Article  Google Scholar 

  16. Primas H. (1958): Ein Modulationsverfahren für die Kernresonanzspektroskopie hoher Auflösung. Helv. Phys. Acta 31, 17–24.

    MathSciNet  Google Scholar 

  17. Primas H. and Günthard Hs.H. (1958): Eine Methode zur direkten Berechnung des Spektrums der von quantenmechanischen Systemen absorbierten bzw. emittierten elektromagnetischen Strahlung. Helv. Phys. Acta 31, 413–434.

    MathSciNet  MATH  Google Scholar 

  18. Primas H. (1959): A new method for analyzing spectra in high resolution NMR spectroscopy. In Proceedings of the Conference of Molecular Spectroscopy, ed. by R. Thornton and H.W. Thompson (Pergamon Press, London), pp. 19–25.

    Google Scholar 

  19. Primas H. (1959): Anwendungen der magnetischen Kernresonanz in der Chemie. Chimia 13, 15–23.

    Google Scholar 

  20. Primas H., Arndt R., and Ernst R. (1959): Die Konstruktion von Kernresonanz-Spektrographen hoher Auflösung Ia. Z. für Instrumentenkunde 67, 293–300.

    Google Scholar 

  21. Primas H., Arndt R., and Ernst R. (1960): Die Konstruktion von Kernresonanz-Spektrographen hoher Auflösung Ib. Z. für Instrumentenkunde 68, 8–13.

    Google Scholar 

  22. Primas H., Arndt R., and Ernst R. (1960): Die Konstruktion von Kernresonanz-Spektrographen hoher Auflösung. IL Die Konstruktion des Hochfrequenzteiles von Kernresonanz-Spektrographen hoher Auflösung. Z. für Instrumentenkunde 68, 21–29.

    Google Scholar 

  23. Primas H., Arndt R., and Ernst R. (1960): Die Konstruktion von Kernresonanz-Spektrographen hoher Auflösung. III. Einige aktuelle Probleme der Kernresonanz-Instrumentierung. Z. für Instrumentenkunde 68, 55–62.

    Google Scholar 

  24. Primas H. (1961): Ueber quantenmechanische Systeme mit einem stochastischen Hamiltonoperator. Helv. Phys. Acta 34, 36–57.

    MathSciNet  Google Scholar 

  25. Primas H. (1961): Eine verallgemeinerte Störungstheorie für quantenmechanische Mehrteilchenprobleme. Helv. Phys. Acta 34, 331–351.

    MathSciNet  MATH  Google Scholar 

  26. Primas H. (1962): 35 Jahre Quantenchemie. Chimia 16, 281–289.

    Google Scholar 

  27. Primas H., Arndt R., and Ernst R. (1962): Group contributions to the chemical shift in proton magnetic resonance of organic compounds. In Advances in Molecular Spectroscopy (Proceedings of the International Meeting of Molecular Spectroscopy, Bologna 1959), ed. by A. Mangini (Pergamon Press, Oxford), pp. 1246–1252.

    Google Scholar 

  28. Ernst R. and Primas H. (1962): High resolution NMR-instrumentation: Recent advances and prospects. Disc. Faraday Soc. 34, 43–51.

    Article  Google Scholar 

  29. Ernst R. and Primas H. (1963): Nuclear magnetic resonance with stochastic high-frequency fields. Helv. Phys. Acta 36, 583–600.

    Google Scholar 

  30. Primas H. (1963): Generalized perturbation theory in operator form. Rev. Mod. Phys. 35, 710–712.

    Article  MathSciNet  ADS  Google Scholar 

  31. Banwell C.N. and Primas H. (1963): On the analysis of high-resolution nuclear magnetic resonance spectra. I. Methods of calculating NMR spectra. Mol. Phys. 6, 225–256.

    Article  ADS  Google Scholar 

  32. Ernst R. and Primas H. (1963): Gegenwärtiger Stand und Entwicklungstendenzen in der Instrumentierung hochauflösender Kernresonanz-Spektrometer. Ber. Bunsengesellschaft phys. Chemie 67, 261–267.

    Google Scholar 

  33. Primas H. (1964): Was sind Elektronen? Helv. Chim. Acta 47, 1840–1851.

    Article  Google Scholar 

  34. Huber A. and Primas H. (1965): On the design of wide range electromagnets of high homogeneity. Nucl. Instruments and Methods 33, 125–130.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ernst, R.R. (1999). Hans Primas and Nuclear Magnetic Resonance. In: Atmanspacher, H., Amann, A., Müller-Herold, U. (eds) On Quanta, Mind and Matter. Fundamental Theories of Physics, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4581-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4581-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5940-4

  • Online ISBN: 978-94-011-4581-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics