Skip to main content

Localization of Light in Randomized Periodic Media

  • Chapter
Book cover Diffuse Waves in Complex Media

Part of the book series: NATO Science Series ((ASIC,volume 531))

Abstract

In this article we describe a mathematically rigorous proof of Anderson localization of light in randomized periodic media, based on the macroscopic Maxwell equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. W. Anderson, “Absense of Diffusion in Certain Random Lattice,” Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, “A Question of Classical Localization. A Theory of White Paint,” Philosophical Magazine B 53, 505–509 (1985).

    Google Scholar 

  3. J. M. Barbaroux, J. M. Combes and P. D. Hislop, “Localization near Band Edges for Random Schrodinger Operators,” Helv. Phys. Acta, to appear.

    Google Scholar 

  4. M. Sh. Birman and M. Z. Solomyak, “L 2 Theory of the Maxwell Operator in Arbitrary Domains,” Russian Math. Surveys, 42:6, 75–96, 1987.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operators (Birkhäuser, Boston, USA, 1990).

    Book  MATH  Google Scholar 

  6. J. Combes and P. Hislop, “Localization for some Continuous, Random Hamiltonians in d-dimensions,” J. Funct. Anal. 124, 149–180 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. Development and Applications of Materials Exhibiting Photonic Band Gaps, Journal of the Optical Society of America B 10, 280–413 (1993).

    Google Scholar 

  8. L. Deych and A. Lisyansky, “Impurity Localization of Electromagnetic Waves in Polariton Region,” Phys. Rev. Lett., to appear.

    Google Scholar 

  9. H. von Dreifus and A. Klein, “A New Proof of Localization in the Anderson Tight Binding Model,” Commun. Math. Phys. 124, 285–299 (1989).

    Article  ADS  MATH  Google Scholar 

  10. A. Figotin, “High-contrast Photonic crystals,” in this volume.

    Google Scholar 

  11. A. Figotin and A. Klein, “Localization Phenomenon in Gaps of the Spectrum of Random Lattice Operators,” J. Stat. Phys. 75, 997–1021 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. A. Figotin and A. Klein, “Localization of Electromagnetic and Acoustic Waves in Random Media. Lattice Model,” J. Stat. Phys. 76, 985–1003 (1994).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. A. Figotin and A. Klein, “Localization of Classical Waves I: Acoustic Waves,” Commun. Math. Phys. 180, 439–482 (1996).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. A. Figotin and A. Klein, “Localization of Classical Waves II: Electromagnetic Waves,” Commun. Math. Phys. 184, 411–441 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. A. Figotin and A. Klein, “Localized Classical Waves Created by Defects,” J. Stat. Phys. 86, 165–177 (1997).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. A. Figotin and A. Klein, “Midgap Defect Modes in Dielectric and Acoustic Media,” SIAM J. Appl. Math. (1998).

    Google Scholar 

  17. A. Figotin and A. Klein, “Localization of Light in Lossless Inhomogeneous Dielectrics,” J. Opt. Soc. Am. A 15, 1423–1435 (1998).

    Article  ADS  Google Scholar 

  18. A. Figotin and P. Kuchment, “Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model,” SIAM J. Appl. Math. 56, 68–88 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Figotin and P. Kuchment, “Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. II. 2D Photonic Crystals,” SIAM J. Appl. Math. 56, 1561–1620 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  20. J. Fröhlich and T. Spencer, “Absence of Diffusion in the Anderson Tight Binding Model for Large Disorder or Low Energy,” Commun. Math. Phys. 88, 151–184 (1983).

    Article  ADS  MATH  Google Scholar 

  21. J. Fröhlich, F. Martinelli, E. Scoppola and T. Spencer, “Constructive Proof of Localization in the Anderson Tight Binding Model,” Commun. Math. Phys. 101, 21–46 (1985).

    Article  ADS  MATH  Google Scholar 

  22. F. Germinet and S. De Bievre, “Dynamical Localization for Discrete and Continuous Random Schrödinger Operators,” Commun. Math. Phys., to appear.

    Google Scholar 

  23. H. Holden and F. Martinelli, “On Absence of Diffusion near the Bottom of the Spectrum for a Random Schrödinger Operator on L 2(ℝv),” Commun. Math. Phys. 93, 197–217 (1984).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. P. M. Hui and N. F. Johnson, “Photonic Band-Gap Materials,” in Solid State Physics, vol. 49, H. Ehrenreich and F. Spaepen, eds., 151–203 (Academic Press, New York, USA, 1995).

    Google Scholar 

  25. S. Jitomirskaya and A. Klein, in preparation.

    Google Scholar 

  26. J. Joannopoulos, R. Meade and J. Winn, Photonic Crystals (Princeton University Press, Princeton, USA, 1995).

    MATH  Google Scholar 

  27. S. John, “Localization of Light,” Phys. Today, May 1991, 32–40.

    Google Scholar 

  28. S. John, “The Localization of Light,” in Photonic Band Gaps and Localization, C.M. Soukoulis, ed., NATO ASI Series B., Vol. 308, 1–22 (Plenum, New York, 1993).

    Google Scholar 

  29. W. Kirsch and F. Martinelli, “On the Ergodic Properties of the Spectrum of General Random Operators,” J. Reine Angew. Math. 334, 141–156 (1982).

    MATH  MathSciNet  Google Scholar 

  30. A. Klein and A. Koines, “A General Framework for Localization of Classical Waves,” in preparation.

    Google Scholar 

  31. A. Klein and M. Seifert, in preparation.

    Google Scholar 

  32. W. Kohler, G. Papanicolaou and B. White, “Localization and Mode Convertion for Elastic Waves in Randomly Layered Media,” Wave Motion 23, 1–22 and 181–201 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  33. I. M. Lifshits, S. A. Greduskul and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, USA, 1988).

    Google Scholar 

  34. A. Maradudin, E. Montroll and G. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, 1963).

    Google Scholar 

  35. J. Maynard, “Acoustic Anderson Localization,” in Random Media and Composites, B. V. Kohn and G. W. Milton, eds., 206–207 (SIAM, Philadelphia, USA, 1988).

    Google Scholar 

  36. L. Pastur and A. Figotin, Spectra of Random and Almost-periodic Operators (Springer-Verlag, Heidelberg, USA, 1991).

    Google Scholar 

  37. J. Rarity and C. Weisbuch, eds., Microcavities and Photonic Bandgaps: Physics and Applications (Kluwer Academic Publishers, Dordrecht, Holland, 1995).

    Google Scholar 

  38. B. Shklovskii and A. Efros, Electronic Properties of Doped Semiconductors (Springer-Verlag, Heidelberg, Germany, 1984).

    Google Scholar 

  39. C. Soukoulis, ed., Photonic Band Gaps and Localization (Plenum, New York, 1993).

    Google Scholar 

  40. C. Soukoulis, ed., Photonic Band Gap Materials (Kluwer Academic Publishers, Dordrecht, Holland, 1996).

    Google Scholar 

  41. C. Soukoulis, “Photonic Band Gap Materials,” in this volume.

    Google Scholar 

  42. P. R. Villeneuve and J. Joannopoulos, “Working at the Speed of Light,” Science Spectra, Number 9, 18–24 (1997).

    Google Scholar 

  43. P. R. Villeneuve and M. Piche, “Photonic Band Gaps in Periodic Dielectric Structures,” Prog. Quant. Electr. 18, 153–200 (1994).

    Article  ADS  Google Scholar 

  44. D. Wiersma, P. Bartolini, A. Lagendijk and R. Righini, “Localization of Light in a Disordered Medium,” Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  45. D. Wiersma, in this volume.

    Google Scholar 

  46. E. Yablonovitch, T. Gmitter, R. Meade, D. Brommer, A. Rappe and J. Joannopoulos, “Donor and Acceptor Modes in Photonic Periodic Structure,” Phys. Rev. B 44, 13772–13774 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Klein, A. (1999). Localization of Light in Randomized Periodic Media. In: Fouque, JP. (eds) Diffuse Waves in Complex Media. NATO Science Series, vol 531. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4572-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4572-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5680-6

  • Online ISBN: 978-94-011-4572-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics