Skip to main content

An Approach to Modelling Anoxic Conditions in the Black Sea

  • Chapter
  • 153 Accesses

Part of the book series: NATO Science Series ((ASEN2,volume 56))

Abstract

In anoxic conditions the oxidation of organic matter occurs in different stoichimetric reactions. Therefore modelling of oxic/anoxic transformation requires parameterization of the cycles of several elements simultaneously, in contrast to models dealing only with nutrient cycles under oxic conditions, where it is possible to use the Redfield ratios. An O-N-S-Mn model is considered to describe the biogeochemical sources. Rates of biochemical processes mediated by bacteria are described by first-order equations using semiempirical functions of O2 concentration.

The processes of turbulent diffusion, sedimentation, and biogeochemical transformation of compounds were parameterized in the frames of one-dimensional and two-dimensional coupled models. The model was calibrated using data observed for the vertical distribution of compounds in the upper layers of the Black Sea. The calculated spatial distributions of nitrogen compounds (total organic nitrogen, ammonium, nitrate, nitrite), inorganic reduced sulfur compounds (hydrogen sulfide, elemental sulfur, thiosulfate, sulfate), dissolved and particulate manganese, as well as dissolved oxygen agree reasonably well with the observations.

Model estimations confirm that the existence of anoxic conditions is controlled primarily by the peculiarities of organic matter decay (a consequence of oxidant consumption) in conjunction with restricted aeration. According to the model simulations, the most sensitive hydrochemical parameters from point of view of vertical advection anomalies are particulate manganese, organic matter and elemental sulphur. The results of work undertaken so far suggests that future development of the model should concentrate on the improvement of parameterization of peculiarities of sedimentation connected with manganese cycle, organic matter balance, and the use of hydrophysical model results for the description of advection and diffusion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J.J., Okubo, A., Robbins, A S, and Richards, F A, (1982) A model for nitrite and nıtrate dıstributions in oceanic oxygen minimum zones, Deep Sea Res 29, 1113–1140.

    Article  CAS  Google Scholar 

  2. Ayzatullin, T.A, and Leonov, A V. (1975) Kınetıcs and mechanism of oxidative transformation of inorganic sulfur compounds in sea water, Okeanologiya 15, 1026–1033, (Russian).

    Google Scholar 

  3. Basturk, O., Volkov, I.I, Gokmen, S., Gungor, H, Romanov, AS, and Yakushev, E V (1998, in press) International expedition on r/v “Bılım” in July 1997 in the Black Sea, Oceanology 2.

    Google Scholar 

  4. Belyaev V.I., E.E Sovga, and Lyubartseva S P (1997) Modeling the hydrogen sulfide zone of the Black Sea, Ecologıcal Modellıng 96, 51–59.

    Article  CAS  Google Scholar 

  5. Bezborodov, A.A., and Eremeev V.N (1993), Chernoe more Zona vzaımodeystvıya aerobnych ı anaerobnych vod [Black Sea. The oxic/anoxıc ınterface], AS of the Ukraıne, the Marıne Hydrophysıcal Instıtute, Sevastopol, 299,(Russian, English summary)

    Google Scholar 

  6. Jorgensen, B B (1989) Bıogeochemistry of chemoautotrophic bacterıa, in H G Shlegel and B. Bowien B. (eds.), Autotrophıc Bacterıa, Scı. Tech. Publ & Sprınger-Verlag, Madıson, pp 117–146.

    Google Scholar 

  7. Kondrat’eva, E N. (1983) Chemolıtotrofy ı metılotrofy (Chemolıthotrophs and methılotrophs), Moscow State Universıty, Moscow, 172 pp.

    Google Scholar 

  8. Lewis, B.L., and Landıng, W.M. (1991) The biogeochemıstry of manganese and iron ın the Black Sea, Deep Sea Res 38(2A), S773–S803

    Google Scholar 

  9. Murray, J W., Codispotı, L.A, and Frıederich, G E. (1995) The suboxıc zone in the Black Sea, ın C.P. Huang, R O’Melıa and J J. Morgan (eds) Aquatıc chemıstry ınterfacıal and ınterspecıes processes, American Chemıcal Socıety, pp 157–176

    Google Scholar 

  10. Murray, J.W., Jannasch, H W, Honjo, S., et al., (1989) Unexpected changes in the oxıc/anoxıc ınterface ın the Black Sea, Nature 338, 411–413

    Article  CAS  Google Scholar 

  11. Nealson, K.H, Myers, C R., and Wimpee, B B. (1991) Isolation and identıficatıon of manganese-reducıng bacteria and estımates of microbial Mn(IV)-reducıng potential in the Black Sea, Deep Sea Res 38, S907–S920

    Article  Google Scholar 

  12. Oguz, T, Ducklow, H, Malanotte-Rızzoli, P., Tugrul, S, Nezlin, N.P., and Unluata, U. (1996) Sımulatıon of annual plankton productıvity cycle ın the Black sea by a one-dimensıonal physıcal-bıologıcal model. J. Geophys. Res 101, 16585–16599

    Article  Google Scholar 

  13. Rıchards, F.A., (1965), Anoxic basins and fjords, ın J P Rıley and G. Skirrow (eds), Chemıcal Oceanography, Vol.1, Acad Press, New York, pp.611-645

    Google Scholar 

  14. Rozanov A G. (1995) Redox stratıficatıon of the Black Sea water, Oceanology 35, 4, 544-549 (Russıan)

    Google Scholar 

  15. Sergeev, Yu N. (ed.), (1979), Modelırovanıye perenosa ı transformacıı veschestv v more [Modelıng of transport and transformatıon of substances ın sea], LSU, Lenıngrad, 296 pp., (Russıan).

    Google Scholar 

  16. Skopıntsev, B A, (1975), Formırovanıye sovremennogo chımıcheskogo sostava Chernogo morya [Formatıon of the recent chemıcal composıtıon of the Black Sea], Gidrometeoizdat, Leningrad, 336 pp.(Russian).

    Google Scholar 

  17. Sorokin, Yu.I., Sorokin, D.Yu, and Avdeev, V A (1991) Aktıvnost’ microflory ı okıslıtel’nye processy sernogo cycla v tolsche vody Chernogo morya [Microbıal activity and sulfur cycle oxıdation processes in the Black Sea water column], in M E Vinogradov (ed), Izmenchıvost’ ecosystemy Chernogo morya (estesstvennye ı antropogennyye faktory), Nauka, Moscow, pp. 173–188 (Russıan).

    Google Scholar 

  18. Sorokin, Yu.I., Sorokın, P Yu, and Sorokına O V (1992) Raspredeleniye i funkcıonal’naya aktivnost’ microflory v tolsche vody Chernogo morya zımoy ı v nachale vesny 1991 g [Dıstrıbution and functional mıcroflora actıvity ın the Black Sea water column during winter and beginnıng spring 1991], ın M.E. Vinogradov (ed.) Zimnee sostoyaniye ecosystemy otkrytoy chastı Chernogo morya, IO RAS, Moscow, pp. 89–102,(Russian).

    Google Scholar 

  19. Tebo, B M. (1991) Manganese (II) oxıdation in the suboxıc zone of the Black Sea, Deep Sea Res. 38, S883–S906.

    Article  Google Scholar 

  20. Van Eeckhout D., and Lancelot C (in press) Modelıng of the functioning of the North-Western Black Sea ecosystem from 1960 to present, in NATO Advanced Research Workshop on “Sensıtıvıty of North Sea, Baltıc Sea and Black Sea to anthropogenic and clımatıc changes” (14–18 November 1995) NATO-ASI Series.

    Google Scholar 

  21. Volkov, Igor I, (1984) Geochımıya sery v osadkach okeana [Sulfur geochemıstry ın ocean sedıments], Nauka, Moscow, 272 pp (Russian)

    Google Scholar 

  22. Volkov, I I., Kontar, E.A., Lukashev, Yu.F, Neretın, L.N, Nyffeler, F., Rozanov, A.G. (1997) Upper boundary of hydrogen sulfide: Implications for the nephrloid redox layer in waters of Caucasian Slope of the Black Sea, Geochemıstry Internatıonal 35(6), 540–550.

    Google Scholar 

  23. Volkov, I.I., Rozanov, A.G., Demıdova, T.P. (1992) Soedıniniya neorganicheskoy vosstanovlennoy sery i rasvorennyy marganets v vode Chernogo morya [Inorganic reduced sulfur compounds and dissolved manganese in the Black Sea water column], in M.E. Vinogradov (ed.) Zımnee sostoyaniye ecosystemy otkrytoy chasti Chernogo morya, IO RAS, Moscow, pp. 38–50. (Russian).

    Google Scholar 

  24. Yakushev, E.V (1992) Numerical modeling of transformation of nitrogen compounds in the redox zone of the Black Sea, Oceanology 32(2), 257–263.

    CAS  Google Scholar 

  25. Yakushev, E.V. and Neretin, L.N (1997) One-Dimensıonal Modeling of Nitrogen and Sulfur Cycles ın the Aphotic Zones of the Black and Arabian Seas, Global Bıogeochemıcal Cycles 11(3), 401–414

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yakushev, E.V. (1999). An Approach to Modelling Anoxic Conditions in the Black Sea. In: Beşiktepe, S.T., Ünlüata, Ü., Bologa, A.S. (eds) Environmental Degradation of the Black Sea: Challenges and Remedies. NATO Science Series, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4568-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4568-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5676-9

  • Online ISBN: 978-94-011-4568-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics