Skip to main content

International Mussel Watch (UNESCO/IOC) in the Black Sea: A Pilot Study for Biological Effects and Contaminant Residues

  • Chapter
Environmental Degradation of the Black Sea: Challenges and Remedies

Abstract

The Black Sea is under increasing stress as a result of inputs of contaminants and eutrophying discharges. This study was an attempt to implement a Pilot “Mussel Watch” programme (supported by UNESCO-IOC, International Mussel Watch) to assess the health of mussel populations in the Black Sea. By utilising mussels for biological monitoring those areas suffering poor environmental quality can be identified. A simple non-injurious test using blood cells as a biological marker (lysosomal integrity/neutral red retention) of pollutant effect was deployed. Contaminants (PAHs, PCBs, selected pesticides and trace metals) were also measured in the tissues of mussels from some sites (Bulgaria and Ukraine). This data was supplemented with the results of a rapid source inventory of land based discharges (World Health Organisation) into the Black Sea.

The results of the “Mussel Watch Pilot Study” clearly showed that there were harmful effects at sites where there were known anthropogenic inputs, as identified in a WHO Inventory. Samples taken from recreational sites and sites well removed from significant anthropogenic influences showed no evidence of pathological perturbation. The effects measurement was based on the intracellular retention of the dye neutral red. Retention time of this dye is markedly reduced when the mussels are exposed to toxic chemicals. The results showed a strong correlation between the biological effect, Biochemical Oxygen Demand (BOD) and Total Suspended Sediment (TSS). Contaminant data for polycyclic aromatic hydrocarbons was available: this showed a direct correlational trend with BOD and TSS; but this was not significant due to the limited number of samples analysed. Chemical data was only available from the sampling sites in Russia, Ukraine and Bulgaria.

The conclusions are that the biological effects data clearly identify sites where there are significant harmful impacts on the mussels. These sites were all subject to significant anthropogenic inputs as evidenced by the measurements of BOD, TSS and chemical contaminants. Despite the problems encountered in obtaining comprehensive chemical data it is recommended that the Mussel Watch should be continued using the neutral red retention procedure as an indicator of harmful effect, coupled with chemical contaminant measurements. Efforts to develop the analytical capabilities in the region should continue to be supported. This strategy will help to develop the regional, national and international infrastructures for assessment of environmental impact to the Black Sea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldberg, E.D., Bowen, V.T., Farrington, J.W., Harvey, G., Martin, J.H., Parker, P.L., Risebrough, R.W, Robertson, W., Schneider, E. & Gamble, E. (1978) The mussel watch. Envıron. Conserv. 5, 101–126.

    Article  CAS  Google Scholar 

  2. Moore, M. N. (1990). Lysosomal cytochemistry in marine environmental monitoring. Histochem. J. 22, 187–191.

    Article  PubMed  CAS  Google Scholar 

  3. Depledge, M. H., Amaral-Mendes, J.J., Daniel, B., Halbrook, R S., Kloepper-Sams, P., Moore, M. N, and Peakall, D. P. (1993). The conceptual basis of the bıomarker approach. In: Biomarkers-Research and applıcatıon in the assessment of environmental health, (Eds. D. G. Peakall, and L. R. Shugart), pp. 15–29. Springer, Berlin, Heidelberg.

    Google Scholar 

  4. Bayne, B.K., Addison, R.F., Capuzzo, J.M., Clarke, K.R., Gray, J.S., Moore, M.N., & Warwick, R. M, (1988) An overview of the GEEP Workshop. Mar. Ecol. Prog. Ser. 46, 235–243.

    Article  Google Scholar 

  5. Moore, M. N. (1985). Cellular responses to pollutants. Mar. Poll. Bull. 16, 134–139.

    Article  Google Scholar 

  6. Topping, G. (1983). Guidelines For The Use Of Biological Material. In: The Fırst Order Pollutıon Assessment And Trend Monıtorıng Dept of Agrıculture and Fisheries for Scotland, Marine Laboratory, Scottish Fisheries Research Report No 28. ISSN 0308 8022, 28 p.

    Google Scholar 

  7. UNEP (1995). Guidelines For Monitoring Chemical Contaminants In The Sea Using Marine Organisms. UNEP Reference Methods For Marine Pollution Studies No. 6.

    Google Scholar 

  8. Moore, M N. (1988). Cytochemical responses of the lysosomal system and NADPH-ferrihemoprotein reductase in molluscan digestive cells to environmental and experimental exposure to xenobiotics. Mar. Ecol. Prog. 46, 81–89.

    Article  CAS  Google Scholar 

  9. Lowe, D.M., Moore, M. N, Evans, B. M (1992) Contaminant impact on interactions of molecular probes with lysosomes in living hepatocytes from dab lımanda lımanda. Mar Ecol. Prog. Ser. 91, 135–140

    Article  CAS  Google Scholar 

  10. Lowe, D. M., Soverchia, C., and Moore, M. N. (1995). Lysosomal membrane responses in mussels to experimental contaminant exposure. Aquatıc Toxıcol. 33, 105–112.

    Article  CAS  Google Scholar 

  11. Widdows, J, and Johnson, D. (1988). Physiological energetıcs of Mytılus edulıs: scope for growth. Mar. Ecol. Prog. Ser 46, 113–121.

    Article  CAS  Google Scholar 

  12. Hawkıns, H.K. (1980) Reactıons of lysosomes to cell injury. In Pathology of Cell Membranes, Vol. 2 (edited by Trump, B.F. & Arstila, A.V.), pp. 252–285. Academic Press. New York, San Francisco, London.

    Google Scholar 

  13. Lowe, D.M. (1988) Alterations in cellular structure of Mytılus edulıs resulting from exposure to environmental contaminants under field and experimental conditions. Mar. Ecol. Prog. Ser. 46, 91–100.

    Article  CAS  Google Scholar 

  14. Moore, M.N., Pipe, R.K., Farrar, S.V., Thomson, S. & Donkın, P. (1986) Lysosomal and misrosomal responses in Lıttorına littorea: further investigations of environmental effects in the vicinity of the Sullom Voe Oil Terminal and the effects of experimental exposure to phenanthrene. In: Oceanıc Processes ın Marıne Pollutıon — Bıologıcal Processes and Waste ın the Ocean, Vol.1 (edited by Capuzzo, J M & Kester, D.R.), pp. 89–96. Krıeger Publishing, Melbourne, Florida.

    Google Scholar 

  15. Moore, M.N., Livingstone, D.R & Widdows, J (1988) Hydrocarbons in marine molluscs: biological effects and ecological consequences. In: Metabolısm of Polycyclic Aromatıc Hydrocarbons ın the Aquatıc Envıronment (edited by Varanasi, U.), pp 291–328. CRC Press, Boca Raton, Florida.

    Google Scholar 

  16. Mihnea P.E., 1995 Black sea Action Plan and the future legislation on sea water quality. Regıonal Conference, Varna, Bulgaria 13-15 June 1995, Conf. Preprints, 411–419.

    Google Scholar 

  17. GESAMP (1994). Guıdelınes for Marıne Envıronmental Assessment, GESAMP Reports and studies No 54. IMO, London, 1994

    Google Scholar 

  18. UNEP (1995). Guıdelınes For Monıtorıng Chemıcal Contamınants In The Seausıng Marıne Organısms. UNEP Reference Methods For Marıne Pollution Studies No 6

    Google Scholar 

  19. ICES (1992). Report of the ICES Advısory Commıttee on Marıne Pollutıon 1992. ICES Cooperative Research Report No. 190, 203pp. International Council for the Exploration of the Sea, Copenhagen.

    Google Scholar 

  20. Phillips, D. J. H. (1981). A comparative evaluation of oysters, mussels and sedıments as indicators of trace metals in Hong Kong waters Mar Ecol. Prog. Ser 3, 285–293.

    Article  Google Scholar 

  21. Phillips, D. J. H. (1988). Barnacles and mussels as ındicators of trace elements: A comparative study. Mar Ecol. Prog. Ser. 49, 83–93.

    Article  CAS  Google Scholar 

  22. Goldberg, E. D (1986) The Mussel Watch concept. Envıron Monıt. Assess. 7, 1.

    Article  Google Scholar 

  23. Tripp, B. W., Farrington, J. W., Goldberg, E. D., Sericano, J. (1992) International Mussel Watch The initial implementation phase. Mar Pollut. Bull. 7, 371–373.

    Article  Google Scholar 

  24. Cajaraville, M. P., Marigomez, J. A., Angulo, E. (1989). A sterological study of lysosomal structure alterations in Lıttorına lıttorea exposed to 1-naphthol. Comp. Bıochem. Physıol. 93, 231–237.

    Article  Google Scholar 

  25. Hinton, D. E. (1989). Environmental contamination and cancer in fish. Mar. Env. Res. 28, 411–416.

    Article  CAS  Google Scholar 

  26. Köhler, A. (1991). Lysosomal perturbations in fish liver as indicators for toxic effects of environmnental pollution. Comp. Biochem. Physiol. 100, 123–127.

    Google Scholar 

  27. Viarengo, A., Moore, M. N., Pertica, M., Mancinelli, G., Accomando, R. (1992). A simple procedure for evaluating the protein degradation rate in the mussel (M. galloprovıncıalis Lam.) tissues and its application ın the study of phenanthrene effects on protein catabolism. Comp. Biochem. Physiol. 103, 27–32.

    Google Scholar 

  28. Lowe, D. M, Pipe R. K. (1994). Contaminant ınduced lysosomal membrane damage in marine mussel digestive cells: an ın vıtro study. Aquat. Toxıcol. 30, 357–365.

    Article  CAS  Google Scholar 

  29. Krishnakumar, P. K., Casillas, E., Varanasi, U. (1994). Effect of envıronmental contaminants on the health of Mytilus edulis from Puget Sound, Washington, USA. I. Cytochemical measures of lysosomal responses in the digestive cells using automatic image analysis. Mar. Ecol. Prog. Ser. Vol. 106, 249–261.

    Article  Google Scholar 

  30. Moore, M. N., Wedderburn, R. J., Lowe, D. M., Depledge, M. H. (1996). Lysosomal reaction to xenobiotics in mussel hemocytes using BODIPY-FL-Verapamil. Mar. Envıron. Res. 42, 99–105.

    Article  CAS  Google Scholar 

  31. Widdows, J., Bakke, T., Bayne, B. L., Donkin, P., Livingstone, D. R., Lowe, D. M., Moore, M. N., Evans, S. V., Moore, S. L. (1982). Responses of Mytilus edulıs on exposure to the water-accomodated fraction on North Sea oil. Mar. Bıol. 67, 15–31.

    Article  CAS  Google Scholar 

  32. Moore, M. N., Livingstone, D. R., Widdows, J., Lowe, D. M., Pipe, R. K. (1987). Molecular, cellular, and physiological effects of oil-derived hydrocarbons on molluscs and their use in environmental impact assessment. Phi. Trans. R. Soc. Lond. 316, 603–623.

    Article  CAS  Google Scholar 

  33. Nott, J. A., Moore, M. N. (1987). Effects of polycyclic aromatic hydrocarbons on molluscan lysosomes and endoplasmic reticulum. Hıstochem. J. 19, 357–368.

    Article  PubMed  CAS  Google Scholar 

  34. Viarengo, A., Moore, M. N., Mancinelli, G., Mazzucotelli, A., Pipe, R K., Farrar, S. V. (1987). Metallothioneins and lysosomes in metal toxicity and homeostasis in marine mussels: the effects of cadium in the presence and absence of phenanthrene. Mar. Biol. 94, 251–257.

    Article  CAS  Google Scholar 

  35. Regoli, F. (1992). Lysosomal responses as a sensitive stress index in biomonitoring heavy metal pollution. Mar. Ecol. Prog. Ser. 84, 63–69.

    Article  CAS  Google Scholar 

  36. Winston, G. W, Moore, M N., Straatsburg, I., Kirchin, M. A. (1991). Decreased stability of digestive gland lysosomes from the common mussel M. edulıs L. by ın vıtro generation of oxygen-free radicals. Arch. environ. Contam. Toxıcol. 21, 401–408.

    Article  CAS  Google Scholar 

  37. Lowe, D. M., Fossato, V U., Depledge, M. H. (1995b). Contaminant induced lysosomal membrane damage in blood cells of mussels M. galloprovıncıalıs from the Venıce Lagoon: an ın vıtro study. Mar. Ecol. Prog Ser. 129, 189–196.

    Article  Google Scholar 

  38. Moore, M. N., Livingstone, D. R., Widdows, J., Lowe, D. M., Pipe, R. K. (1982). Molecular, cellular, and physiological effects of oil derived hydrocarbons on molluscs and their use in impact assessment. Phil. Trans. R. Soc. Lond. B316, 603–623.

    Google Scholar 

  39. Finter, N. B. (1969). Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. J. Gen. Vırol. 5, 419–427.

    Article  CAS  Google Scholar 

  40. Borenfreund, E., Puerner, J. A. (1985). Toxicity determined ın vıtro by morphological alterations and neutral red absorption. Toxıcol. Lett. 24, 199–224.

    Google Scholar 

  41. Wedderburn, R. J., Cheung, V., Bamber, S., Bloxham, M.J., Depledge, M. H. (1997). Biomarkers of biochemical and cellular stress in Carcınus maenas: An ın situ field study. Mar. Env. Res. (Submitted).

    Google Scholar 

  42. Mee, L. D. (1992). The Black Sea in crısis: A need for concerted international action. Ambio. 21, 278–286.

    Google Scholar 

  43. Sarikaya, H. Z., Oitil, E., Sevimli, M. F., Germirli, F., Oktem, Y. (1997). Region wide assessment of the land based sources of pollution to the Black Sea. Black Sea Environmental Programme Technical Reports 7. UNDP-UNEP-World Bank, Istanbul, 140pp.

    Google Scholar 

  44. Lawrence, E. (1995). Dictionary of biological terms.Longman Scientific and Technical, Longman House, London.

    Google Scholar 

  45. Gray, J. S. (1992). Biological and ecological effects of marine pollutants and their detection. Mar Pollut. Bull. 25, 48–50.

    Article  Google Scholar 

  46. Wedderburn, R. J., Moore, M. N., Wade, T., Lowe, D. M., Wedderburn, R. J., Wade, T., Balashov, G., Büyükgungor, H., Daurova, Y, Denga, Y., Kostylev, E., Mihnea, P., Moncheva, S., Özkoc, H., Tabagari, S, Depledge, M. H. (1998). The Black Sea Mussel Watch: biological effects and contaminant residues. Mar Poll. Bull., In Press.

    Google Scholar 

  47. Axiak, V., George, J. J, Moore, M. N. (1988). Petroleum hydrocarbons m the marine bivalve Venus verrucosa: accumulation and cellular responses. Mar. Biol. 97, 225–230.

    Article  CAS  Google Scholar 

  48. Konsoulova, T. (1993). Marine macrozoobenthic community structures in relation to some environmental factors. Comp. Rend. Acad. Sci. Bulg. 5(46), 115–118.

    Google Scholar 

  49. Tracy, G. A. (1990). Test for effects of eutrophication on the toxicity of copper to the blue mussel Mytılus edulis. J. Shellfish. Res. 8, 439.

    Google Scholar 

  50. Losovskaya, G. V., Garkavaya, G. P., Salskij, V. A. (1990). Changes in the benthic communities and fluctuations in the number of dominant species under conditions of eutrophication in the north-western part of the Black sea Ehkol. Morya. 35, 22–28.

    Google Scholar 

  51. Gilek, M, Bjoerk, M., Broman, D., Kautsky, N., Naef, C. (1996). Enhanced accumulation of PCB congeners by Baltic Sea blue mussels, Mytılus edulıs, with increased algal enrichment. Envıron. Toxıcol. Chem. 15, 1597–1605.

    CAS  Google Scholar 

  52. Rainbow, P. S. (1995). Biomonitorıng of heavy metal availability in the marine environment. In: International conference on marine pollutıon and ecotoxicology held in Hong Kong, 22, 26, January 1995. Wu, R. S. S., Atlas, R. M., Goldberg, E. D, Sheppard, C., Chapman., P. M., Conell, D. W., McIntyre, A. D., Rainbow, P. S.-eds. 31, 183–192.

    Google Scholar 

  53. Nelson, W. G., Phelps, D. K., Galloway, W. B., Rogerson, P F., Pruell, R. J. (1987). Effects of Black Rock harbour dredged materıal on the scope for growth of the blue mussel, Mytılus edulıs after laboratory and field exposures. Tech. Rep. U. S. Army. Eng. Waterways. Exp. Stn. 122 pp.

    Google Scholar 

  54. Prins, T. C., Smaal, A. C. (1987). Carbon and nitrogen budgets of the mussel Myılus edulıs and the cockle Cerastoderma edule ın relation to food quality. Proceedings of the 22nd European Marine Biology Symposium. Ros, J. ed. Barcelona, Spain, Inst. De Ciencias Del Mar. Top. Mar. Bıol. 53, 477–482

    Google Scholar 

  55. Zaitsev, Yu, and Mamaiev, V. (1997). Marine Biological Diversity of the Black Sea. United Nations Publications. New York.

    Google Scholar 

  56. Depledge, M. H., Aagaard, A., Gyoerkoes, P. (1994). Assessment of trace metal toxicity using molecular, physiological and behavioural bıomarkers. Trace Metals in the Aquatic Environment. Proceedings of the Third Internatıonal Conference held ın Aarhus, Denmark. Phillıps, D J. H., Rainbow, P. S.-eds. 31, 19–27

    Google Scholar 

  57. Moore, M. N., Vıarengo, A. Lysosomal membrane fragility and catabolism of cytosolic proteins: Evidence for a direct relationship. Experıentıa. 43, 320–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Moore, M.N. et al. (1999). International Mussel Watch (UNESCO/IOC) in the Black Sea: A Pilot Study for Biological Effects and Contaminant Residues. In: Beşiktepe, S.T., Ünlüata, Ü., Bologa, A.S. (eds) Environmental Degradation of the Black Sea: Challenges and Remedies. NATO Science Series, vol 56. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4568-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4568-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5676-9

  • Online ISBN: 978-94-011-4568-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics