Skip to main content

The Principles of Total Intravenous Anesthesia (TIVA)

  • Chapter
Anesthesia for the New Millennium

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 34))

  • 142 Accesses

Abstract

This review will provide the reader with a rational basis for the administration of intravenous anesthetics. This will be based on our increasing understanding of the pharmacological processes that provide anesthesia. The goal of any anesthetic drug is to rapidly render the patient unconscious, maintain adequate anesthesia (irrespective of any surgical intervention), and then allow a rapid recovery to the awake state. To achieve this the drug needs to provide a rapid onset/offset and have a delivery system that can readily alter the effective concentration of the drug. Over the past 30 years we have gained a greater appreciation of the pharmacokinetic principles that determine onset and offset of intravenous drugs. Classically, intravenous anesthetics have been given either as a large single dose or by multiple smaller intermittent doses for induction and maintenance of anesthesia. Recent studies indicate that intravenous anesthetics given by variable rate continuous infusions provide several advantages over intermittent bolus administration. These include: a) greater hemodynamic stability; b) fewer incidences of hemodynamic breakthrough and other signs of patient responsiveness; c) reduced need for supplemental anesthetics or vasoactive drugs; d) more rapid awakening; e) decreased incidence of requirements for naloxone or need for post-operative ventilatory support; f) decreased incidence of side effects; and g) lower total dose of drug given (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glass PSA, Shafer SL, Jacobs JR, Reves JG: Intravenous drug delivery systems, Anesthesia. Edited by Miller R. New York, NY, Churchill Livingstone, 1994, pp 389–416

    Google Scholar 

  2. Iliadis A, Bruno R, Cano JP: Dynamical dosage regimen calculations in linear pharmacokinetics. Comp Biomed Res 21:203–20, 1988

    Article  CAS  Google Scholar 

  3. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J: Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharm Ther 25:358–71, 1979

    CAS  Google Scholar 

  4. Scott JC, Ponganis KV, Stanski DR: EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 62:234–41, 1985

    Article  PubMed  CAS  Google Scholar 

  5. Scott JC, Stanski DR: Decreased fentanyl and alfentanil dose requirements with age. A simultaneous pharmacokinetic and pharmacodynamic evaluation. J Pharm Exp Ther 240:159–66, 1987

    CAS  Google Scholar 

  6. Shafer SL, Varvel JR: Pharmacokinetics, pharmacodynamics, and rational opioid selection. Anesthesiology 74:53–63, 1991

    Article  PubMed  CAS  Google Scholar 

  7. Kruger-Thiemer E: Continuous intravenous infusion and multicompartment accumulation. Eur J Pharmacol 4:317–24, 1968

    Article  PubMed  CAS  Google Scholar 

  8. Schwilden H: A general method for calculating the dosage scheme in linear pharmacokinetics. Eur J Clin Pharmacol 20:379–86, 1981

    Article  PubMed  CAS  Google Scholar 

  9. Hughes MA, Glass PSA, Jacobs JR: Context-sensitive half-time in multi-compartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 76:334–41, 1992

    Article  PubMed  CAS  Google Scholar 

  10. Ausems ME, Hug CC, Jr., Stanski DR, Burm AGL: Plasma concentrations of alfentanil required to supplement nitrous oxide anesthesia for general surgery. Anesthesiology 65:362–73, 1986

    Article  PubMed  CAS  Google Scholar 

  11. Glass PSA, Doherty M, Jacobs JR, Goodman D, Smith LR: Plasma concentration of fentanyl, with 70% nitrous oxide, to prevent movement at skin incision. Anesthesiology 78:842–7, 1993

    Article  PubMed  CAS  Google Scholar 

  12. Billard V, Gambus PL, Stanski DR, Shafer SL: A comparison of spectral edge, delta power, and bispectral index as EEG measures of alfentanil, propofol, and midazolam drug effect. Clin Pharmacol Ther 61:45–58, 1997

    Article  PubMed  CAS  Google Scholar 

  13. Egan TD, Lemmens MH, Fiset P, Stanski DR, Shafer S: Pharmacokinetic-dynamic fingerprinting in the early development of GI87084B. Clin Pharmacol Ther 53(2):209, 1993

    Google Scholar 

  14. Hung OR, Varvel JR, Shafer SL, Stanski DR: Thiopental pharmacodynamics II. Quantitation of clinical and electroencephalo-graphic depth of anesthesia. Anesthesiology 77:237–44, 1992

    Article  PubMed  CAS  Google Scholar 

  15. Schwilden H, Schüttler J, Stockel H: Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 67:341, 1987

    Article  PubMed  CAS  Google Scholar 

  16. Schwilden H, Stoekel H, Schuttler J: Closed-loop feedback control of propofol anaesthesia by quantitative EEG analysis in humans. Br J Anaesth 62:290–6, 1989

    Article  PubMed  CAS  Google Scholar 

  17. Scott JC, Cooke JE, Stanski DR: Electroencephalographic quantitation of opioid effect: comparative pharmacodynamics of fentanyl and sufentanil. Anesthesiology 74:34, 1991

    Article  PubMed  CAS  Google Scholar 

  18. Kissin I, Brown PT, Bradley EL, Robinson CA, Cassady JL: Diazepammorphine hypnotic synergism in rats. Anesthesiology 70:689–94, 1989

    Article  PubMed  CAS  Google Scholar 

  19. Kissin I, Vinik HR, Castillo R, Bradley EL: Alfentanil potentiates midazolam induced unconsciousness in sub analgesic doses. Anesth Analg 71:65–9, 1990

    PubMed  CAS  Google Scholar 

  20. Kissin I, Brown PT, Bradley EL: Sedative and hypnotic midazolam-morphine interactions in rats. Anesth Analg 71:137–43, 1990

    PubMed  CAS  Google Scholar 

  21. Kissin I, Mason JO, Bradley EL: Morphine and fentanyl hypnotic interactions with thiopental. Anesthesiology 67:331–5, 1987

    Article  PubMed  CAS  Google Scholar 

  22. Vinik HR, Bradley EL, Kissin I: Alfentanil does not potentiate hypnotic effect of propofol (abstract). Anesth Analg 72:S308, 1991

    Google Scholar 

  23. Vinik HR, Bradley Jr EL, Kissin I: Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg 78:354–8, 1994

    Article  PubMed  CAS  Google Scholar 

  24. Smith C, McEwan AI, Jhaveri R, Wilkinson M, Goodman D, Smith LR, Canada AT, Glass PSA: The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology 81: 820–8, 1994

    Article  PubMed  CAS  Google Scholar 

  25. Vuyk J, Lim T, Engbers FHM, Burm AGL, Vletter AA, Bovill JG: The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in female patients. Anesthesiology 83:8–22, 1995

    Article  PubMed  CAS  Google Scholar 

  26. Telford RJ, Glass PSA, Goodman D, Jacobs JR: Fentanyl does not alter the “sleep” plasma concentration of thiopental. Anesth Analg 75: 523–9, 1992

    Article  PubMed  CAS  Google Scholar 

  27. Glass PSA, Gan TJ, Howell S, Ginsberg B: Drug interactions: Volatile anesthetics and opioids. J Clin Anesth 9:18s–22s, 1997

    Article  PubMed  CAS  Google Scholar 

  28. Shafer SL, Gregg K: Algorithms to rapidly achieve and maintain stable drug concentrations at the site of drug effect with a computer controlled infusion pump. J Pharmacokinet Biopharm 20:147–69, 1992

    PubMed  CAS  Google Scholar 

  29. Jacobs JR, Williams EA: Algorithm to control “effect compartment” drug concentrations in pharmacokinetic model-driven drug delivery. IEEE Trans Biomed Eng 40((10)): 993–9, 1993

    Article  PubMed  CAS  Google Scholar 

  30. Jacobs JR: Algorithm for optimal linear model-based control with application to pharmacokinetic model-driven drug delivery. IEEE Trans Biomed Eng 37:107–9, 1990

    Article  PubMed  CAS  Google Scholar 

  31. Schwilden H, Schuttler J, Stoekel H: Pharmacokinetics as applied to total intravenous anaesthesia: theoretical considerations. Anaesthesia 38((suppl)):51–2, 1983

    Article  PubMed  CAS  Google Scholar 

  32. Servin FS: TCI compared with manually controlled infusion of propofol: a multi-center study. Anaesthesia 53(Supplement 1):82–6, 1998

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glass, P.S.A. (1999). The Principles of Total Intravenous Anesthesia (TIVA). In: Stanley, T.H., Egan, T.D. (eds) Anesthesia for the New Millennium. Developments in Critical Care Medicine and Anesthesiology, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4566-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4566-4_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5935-0

  • Online ISBN: 978-94-011-4566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics