Skip to main content

Target Controlled Drug Delivery in Anesthesiology

  • Chapter
Anesthesia for the New Millennium

Part of the book series: Developments in Critical Care Medicine and Anesthesiology ((DCCA,volume 34))

  • 135 Accesses

Abstract

Target controlled drug delivery in anesthesiology is not a new concept but in fact is the clinical basis of all drug delivery in anesthetic practice. That is, the clinician determines a desired level of anesthetic necessary (the target), administers the appropriate amount of agent to achieve the desired anesthetic level (the drug delivery), and then titrates subsequent dose administration based on clinical signs used to indicate the level of anesthetic effect (the control). While this appears to be a relatively straightforward task, the complex relationships which relate the dose of drug given to the pharmacologic effect generated and the degree of ambiguity by which anesthetic level is determined create a challenge even with accurate delivery systems and rapidly acting agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Guedel AE: Inhalational Anesthesia: A Fundamental Guide. MacMillan, New York, 1937

    Google Scholar 

  2. Shafer SL, Kern SE, Stanski DR: The scientific basis of infusion techniques in anesthesia. Bard MedSystems Division, North Reading, MA, 1990

    Google Scholar 

  3. Eger EI, Guadagni NP: Halothane uptake in man at constant alveolar concentration. Anesthesiology 1963; 24:299–304

    Article  Google Scholar 

  4. Mapleson WW: The rate of uptake of halothane vapor in man. Br J Anaesth 1962; 34:11–8

    Article  PubMed  CAS  Google Scholar 

  5. Philip JE: Quantitative administration of inhalation anesthesia. In: Bennett PB, Watkins WD, Safety Concepts in Perioperative Monitoring. Boulder: Ohmeda 1989; pp 44–56

    Google Scholar 

  6. Kern SE, Westenskow DR: Pharmacokinetic-based minibolus delivery as an alternative to continuous infusion for drugs that exhibit a biophase lag. J Pharmacokin Biopharm 1997; 25:191–208

    CAS  Google Scholar 

  7. Vozeh S, Steiner C: Estimates of population pharmacokinetic parameters and performance of Bayesian feedback: a sensitivity analysis. J Pharmacokin Biopharm 1987; 15:511–28

    CAS  Google Scholar 

  8. White M, Kenny GNC: Intravenous propofol anaesthesia using a computerised infusion system. Anaesthesia 1990; 45:204–9

    Article  PubMed  CAS  Google Scholar 

  9. Schuttler J, Kloos S, Shwilden H, Stoeckel H: Total intravenous anaesthesia with propofol and alfentanil by computer assisted infusion. Anaesthesia 1988; 43S:2–7

    Article  Google Scholar 

  10. Alvis JM, Reves JG, Govier AV, Menkhaus PG, et al: Computerassisted continuous infusions of fentanyl during cardiac anesthesia: comparison with a manual method. Anesthesiology 1985; 63:41–9

    Article  PubMed  CAS  Google Scholar 

  11. Short TG, Tarn YH, Tan P, Oh TE: Pharmacokinetic model-controlled infusion of midazolam: a prospective evaluation during general anaesthesia. Anaesthesia 1993; 48:187–91

    Article  PubMed  CAS  Google Scholar 

  12. Schwilden H, Olkkola KT: Use of a pharmacokinetic-dynamic model for automatic feedback control of atracurium. Eur J Clin Pharmacol 1991; 40:293–6

    Article  PubMed  CAS  Google Scholar 

  13. Varvel JR, Donoho DL, Shafer SL: Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokin Biopharm 1992; 20:63–94

    CAS  Google Scholar 

  14. Egan TD: Intravenous drug delivery systems: towards an intravenous “vaporizer.” J Clin Anesth 1996; 8:8S–14S

    Article  PubMed  CAS  Google Scholar 

  15. Egan TD, Kern SE, White JL, Johnson JO: Assessing hypnotic and opioid interactions in volunteers using surrogate measures: a new study paradigm. Anesthesiology 1998; 89:A483

    Article  Google Scholar 

  16. Kearse LA, Rosow C, Zaslavsky A, et al: Bispectral analysis of the electroencephalogram predicts conscious processing of information during propofol sedation and hypnosis. Anesthesiology 1998; 88:25–34

    Article  PubMed  CAS  Google Scholar 

  17. Schuttler J, Schwilden H, Stoeckel H: Pharmacokinetics as applied to total intravenous anaesthesia. Anaesthesia 1983; 38:53S–56S

    Article  Google Scholar 

  18. Ausems ME, Stanski DR, Hug CC: An evaluation of the accuracy of pharmacokinetic data for the computer assisted infusion of alfentanil. Br J Anaesthesia 1985; 57:1217–25

    Article  CAS  Google Scholar 

  19. Glass PSA, Jacobs JR, Smith LR, et al: Pharmacokinetic model-driven infusion of fentanyl: assessment of accuracy. Anesthesiology 1990;73:1082–90

    Article  PubMed  CAS  Google Scholar 

  20. Shafer SL, Varvel JR, Aziz N, Scott JC: Pharmacokinetics of fentanyl administered by computer-controlled infusion pump. Anesthesiology 1990; 73:1091–102

    Article  PubMed  CAS  Google Scholar 

  21. Glass PSA, Glen JB, Kenny GNC, et al: Nomenclature for computer-assisted infusion devices. Anesthesiology 1997; 86:1430–1

    Article  PubMed  CAS  Google Scholar 

  22. Crankshaw DR, Morgan DJ, Beemer GH, Karasawa F: Preprogrammed infusion of alfentanil to constant arterial plasma concentration. Anesth Analg 1993; 76:556–61

    Article  PubMed  CAS  Google Scholar 

  23. Engbers F, Vuyk J: Target-controlled infusion. The Medicine Group: Oxfordshire, 1996

    Google Scholar 

  24. Shafer SL: Constant versus optimal plasma concentrations. Anesth Analg 1993; 7:467–9

    Google Scholar 

  25. Kern SE, Johnson JO, Westenskow DR: Fuzzy logic for model adaptation of a pharmacokinetic-based closed loop delivery system for pancuronium. Artificial Intelligence Medicine 1997; 11:9–31

    Article  CAS  Google Scholar 

  26. Westenskow DR, Meline L, Pace NL: Controlled hypotension with sodium nitroprusside: anesthesiologist versus computer. J Clin Monit 1987; 3:80–6

    Article  PubMed  CAS  Google Scholar 

  27. Schwilden H, Schuttler J, Stoeckel H: Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 1987; 67:341–7

    Article  PubMed  CAS  Google Scholar 

  28. Maitre PO, Stanski DR: Bayesian forecasting improves the prediction of intraoperative plasma concentrations of alfentanil. Anesthesiology 1988; 69:652–9

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kern, S.E. (1999). Target Controlled Drug Delivery in Anesthesiology. In: Stanley, T.H., Egan, T.D. (eds) Anesthesia for the New Millennium. Developments in Critical Care Medicine and Anesthesiology, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4566-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4566-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5935-0

  • Online ISBN: 978-94-011-4566-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics