Skip to main content

AB Initio Liquids: Simulating Liquids Based on First Principles

  • Chapter
Book cover New Approaches to Problems in Liquid State Theory

Part of the book series: NATO Science Series ((ASIC,volume 529))

Abstract

The basic ideas underlying the Car-Parrinello ab initio approach to molecular dynamics simulations are introduced. The central aspect of this technique is the first principles determination of the interactions from concurrent electronic structure calculations. Thus the usual step of introducing parameterized interaction potentials in order perform computer simulations of liquids is avoided. The currently most successful ab initio schemes treat the electrons within Hohenberg-Kohn-Sham density functional theory where generalized gradient approximations to the exchange-correlation energy are used. One example of such a first principles simulation of a liquid, the hydration of Be2+ in water, is presented. Secondly, an extension of the “traditional” Car-Parrinello ab initio molecular dynamics scheme to include quantum-mechanical nuclei is introduced. Within the Born-Oppenheimer separation of nuclei and electrons the nuclear degrees of freedom are quantized using Feynrnan’s path integral formulation of quantum statistical mechanics, whereas the electrons are still represented using density functional theory. This ab initio path integral technique opens the way to study quantum effects in chemically complex systems such as, e.g., an excess proton in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ciccotti, D. Frenkel, and I. R. McDonald, Simulation of Liquids and Solids (North-Holland, Amsterdam 1987).

    Google Scholar 

  2. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford 1987, reprinted 1990).

    Google Scholar 

  3. R. Haberlandt, S. Fritzsche, G. Peinel, and K. Heinzinger Molekulardynamik — Grundlagen und Anwendungen (Vieweg Verlag, Braunschweig 1995).

    Google Scholar 

  4. K. Binder and G. Ciccotti (Eds.), Monte Carlo and Molecular Dynamics of Condensed Matter Systems (Italien Physical Society SIF, Bologna 1996).

    Google Scholar 

  5. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids Vol. 1 (Oxford, Clarendon 1984).

    Google Scholar 

  6. G. C. Schatz, Rev. Mod. Phys. 61, 669 (1991).

    Article  ADS  Google Scholar 

  7. M. Sprik, J. Chem. Phys. 95, 6762 (1991).

    Article  ADS  Google Scholar 

  8. D. Borgis and A. Staib, Chem. Phys. Lett. 238, 187 (1995).

    Article  ADS  Google Scholar 

  9. M. M. Probst, E. Spohr, K. Heinzinger, and P. Bopp, Molec. Sim. 7, 43 (1991).

    Article  Google Scholar 

  10. D. Marx, M. Sprik, and M. Parrinello, Chem. Phys. Lett. 272, 360 (1997).

    Article  Google Scholar 

  11. R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).

    Article  ADS  Google Scholar 

  12. M. Sprik, J. Phys.: Condens. Matter 8, 9405 (1996).

    Article  ADS  Google Scholar 

  13. D. Marx and M. Parrinello, Z. Phys. B (Rapid Note) 95, 143 (1994); note that a misprinted sign in the equation was corrected in Ref. [14].

    Article  ADS  Google Scholar 

  14. D. Marx and M. Parrinello, J. Chem. Phys. 104, 4077 (1996).

    Article  ADS  Google Scholar 

  15. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, J. Chem. Phys. 104, 5579 (1996).

    Article  ADS  Google Scholar 

  16. D. K. Remler and P. A. Madden, Mol. Phys. 70, 921 (1990).

    Article  ADS  Google Scholar 

  17. G. Galli and M. Parrinello, in Computer Simulations in Materials Science p. 282, edited by M. Meyer and V. Pontikis (Kluwer, Dordrecht 1991).

    Google Scholar 

  18. G. Pastore, E. Smargiassi, and F. Buda, Phys. Rev. A 44, 6334 (1991).

    Article  ADS  Google Scholar 

  19. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045 (1992).

    Article  ADS  Google Scholar 

  20. G. Galli and A. Pasquarello, in Computer Simulation in Chemical Physics p. 261, edited by M. P. Allen and D. J. Tildesley (Kluwer, Dordrecht 1993).

    Chapter  Google Scholar 

  21. R. Car, in Monte Carlo and Molecular Dynamics of Condensed Matter Systems p. 601, edited by K. Binder and G. Ciccotti (Italien Physical Society SIF, Bologna 1996).

    Google Scholar 

  22. M. Parrinello, Solid State Commun. 102, 107 (1997).

    Article  ADS  Google Scholar 

  23. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. M. Dreizler and E. K. U. Gross, Density-Functional Theory (Springer, Berlin 1990).

    Book  MATH  Google Scholar 

  26. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford 1989).

    Google Scholar 

  27. R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689 (1989).

    Article  ADS  Google Scholar 

  28. J. P. Perdew, J. A. Chevary, S. K. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  29. B. G. Johnson, P. M. W. Gill, and J. A. Pople, J. Chem. Phys. 98, 5612 (1993).

    Article  ADS  Google Scholar 

  30. E. Ermakova, J. Solca, H. Huber, and D. Marx, Chem. Phys. Lett. 246, 204 (1995).

    Article  ADS  Google Scholar 

  31. J. Solca, A. J. Dyson, G. Steinebrunner, and H. Huber, Chem. Phys. 224, 253 (1997).

    Article  Google Scholar 

  32. B. Kirchner, E. Ermakova, J. Solca, and H. Huber, Chem. Eur. J. 4, 383 (1998).

    Article  Google Scholar 

  33. A. K. Soper, J. Phys.: Condens. Matter 9, 2717 (1997).

    Article  ADS  Google Scholar 

  34. A. K. Soper, F. Bruni, and M. A. Ricci, J. Chem. Phys. 106, 247 (1997).

    Article  ADS  Google Scholar 

  35. K. Laasonen, F. Csajka, and M. Parrinello, Chem. Phys. Lett. 194, 172 (1992).

    Article  ADS  Google Scholar 

  36. K. Laasonen, M. Parrinello, R. Car, Ch. Lee, and D. Vanderbilt, Chem. Phys. Lett. 207, 208 (1993).

    Article  ADS  Google Scholar 

  37. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello, Phys. Rev. Lett. 69, 462 (1992)

    Article  ADS  Google Scholar 

  38. C. Lee, D. Vanderbilt, K. Laasonen, R. Car, and M. Parrinello Phys. Rev. B 47, 4863 (1993).

    Article  ADS  Google Scholar 

  39. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  40. J. P. Perdew and A. Zunger this LDA parameterization is based on the Quantum Monte Carlo data of D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

    Article  Google Scholar 

  41. A. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  42. K. Laasonen, M. Sprik, M. Parrinello, and R. Car, J. Chem. Phys. 99, 9080 (1993).

    Article  ADS  Google Scholar 

  43. E. S. Fois, M. Sprik, and M. Parrinello, Chem. Phys. Lett. 223, 411 (1994).

    Article  ADS  Google Scholar 

  44. P. L. Silvestrelli, M. Bernasconi, and M. Parrinello, Chem. Phys. Lett. 277, 478 (1997).

    Article  ADS  Google Scholar 

  45. M. Sprik, J. Hutter, and M. Parrinello, J. Chem. Phys. 105, 1142 (1996).

    Article  ADS  Google Scholar 

  46. M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello, J. Phys.: Condens. Matter 6, A93 (1994)

    Article  ADS  Google Scholar 

  47. M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello J. Phys. Chem. 99, 5749 (1995)

    Article  Google Scholar 

  48. M. Tuckerman, K. Laasonen, M. Sprik, and M. Parrinello J. Chem. Phys. 103, 150 (1995).

    Article  ADS  Google Scholar 

  49. K. Laasonen and M. L. Klein, J. Amer. Chem. Soc. 116, 11620 (1994)

    Article  Google Scholar 

  50. K. Laasonen and M. L. Klein J. Phys. Chem. 98, 10079 (1994).

    Article  Google Scholar 

  51. D. Marx, J. Hutter, and M. Parrinello; Chem. Phys. Lett. 241, 457 (1995).

    Article  ADS  Google Scholar 

  52. D. Marx, E. Fois, and M. Parrinello, Int. J. Quantum Chem. 57, 655 (1996).

    Article  Google Scholar 

  53. E. J. Meijer and M. Sprik, J. Phys. Chem. A 102, 2893 (1998).

    Article  Google Scholar 

  54. C. Molteni and M. Parrinello, J. Am. Chem. Soc. 120, 2168 (1998)

    Article  Google Scholar 

  55. see also C. Molteni and M. Parrinello Chem. Phys. Lett. 275, 409 (1998).

    Article  Google Scholar 

  56. T. Yamaguchi, H. Ohtaki, E. Spohr, G. Pálinkás, K. Heinzinger, and M. M. Probst, Z. Naturforsch. 41a, 1175 (1986).

    ADS  Google Scholar 

  57. M. M. Probst, E. Spohr, and K. Heinzinger, Chem. Phys. Lett. 161, 405 (1989).

    Article  ADS  Google Scholar 

  58. P.-A. Pittet, G. Elbaze, L. Helm, and A. E. Merbach, Inorg. Chem. 29, 1936 (1990).

    Article  Google Scholar 

  59. B. Marten, K. Kim, C. Cortis, R. A. Friesner, R. B. Murphy, M. N. Ringnalda, D. Sitkoff, and B. Honig, J. Phys. Chem. 100, 11775 (1996).

    Article  Google Scholar 

  60. R. R. Pappalardo and E. Sanchez Marcos, J. Phys. Chem. 97, 4500 (1993)

    Article  Google Scholar 

  61. E. Sánchez Marcos, J. M. Martínez, and R. R. Pappalardo, J. Chem. Phys. 105, 5968 (1996)

    Article  ADS  Google Scholar 

  62. J. M. Martínez, R. R. Pappalardo, E. Sánchez Marcos, K. Refson, S. Díaz-Moreno, and D. Muñoz-Páez, J. Phys. Chem. B 102, 3272 (1998).

    Article  Google Scholar 

  63. M. J. Gillan, in Computer Modelling of Fluids, Polymers, and Solids, edited by C. R. A. Catlow, S. C. Parker, and M. P. Allen (Kluwer, Dordrecht 1990).

    Google Scholar 

  64. D. M. Ceperley, Rev. Mod. Phys. 67, 279 (1995).

    Article  ADS  Google Scholar 

  65. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97, 2635 (1992).

    Article  ADS  Google Scholar 

  66. M. E. Tuckerman, B. J. Berne, G. J. Martyna, and M. L. Klein, J. Chem. Phys. 99, 2796 (1993).

    Article  ADS  Google Scholar 

  67. D. Marx and M. Parrinello, Nature (London) 375, 216 (1995).

    Article  ADS  Google Scholar 

  68. D. Marx and A. Savin, Angew. Chem. Int. Ed. Engl. 36, 2077 (1997).

    Article  Google Scholar 

  69. D. Marx and M. Parrinello, Science 271, 179 (1996).

    Article  ADS  Google Scholar 

  70. M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, Science 275, 817 (1997).

    Article  Google Scholar 

  71. I. Štich, D. Marx, M. Parrinello, and K. Terakura, Phys. Rev. Lett. 78, 3669 (1997)

    Article  ADS  Google Scholar 

  72. I. Štich, D. Marx, M. Parrinello, and K. Terakura J. Chem. Phys. 107, 9482 (1997).

    Article  ADS  Google Scholar 

  73. R. Rousseau and D. Marx, Phys. Rev. Lett. 80, 2574 (1998).

    Article  ADS  Google Scholar 

  74. S. Biermann, D. Hohl, and D. Marx, J. Low Temp. Phys. 110, 97 (1998).

    Article  ADS  Google Scholar 

  75. M. Benoit, D. Marx, and M. Parrinello, Nature (London) 392, 258 (1998)

    Article  ADS  Google Scholar 

  76. see also a News and Views comment by J. Teixeira, Nature (London) 392, 232 (1998)

    Article  ADS  Google Scholar 

  77. M. Benoit, D. Marx, and M. Parrinello, Comp. Mat. Sci. 10, 88 (1998)

    Article  Google Scholar 

  78. D. Marx, in Computer Simulation of Rare Events and the Dynamics of Classical and Quantum Condensed Phase Systems (Enrico Fermi Summer School, Lerici 1997) B. J. Berne, G. Ciccotti, und D. F. Coker (Eds.), in press.

    Google Scholar 

  79. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  80. E. Wicke, M. Eigen and Th. Ackermann, Z. physik. Chem. (N.F.) 1, 340–364 (1954)

    Article  Google Scholar 

  81. for a review see M. Eigen, Angew. Chem. internat. Edit. 3, 1 (1964).

    Article  Google Scholar 

  82. G. Zundel and H. Metzger, Z. physik. Chemie (N.F.) 58, 225 (1968)

    Article  Google Scholar 

  83. for a review see G. Zundel, in The Hydrogen Bond — Recent developments in theory and experiments. II. Structure and spectroscopy p. 683–766 edited by P. Schuster, G. Zundel, C. Sandorfy (North-Holland Publishing Company, Amsterdam 1976).

    Google Scholar 

  84. P. A. Giguère, J. Chem. Educ. 56, 571 (1979).

    Article  Google Scholar 

  85. A. Curioni, M. Sprik, W. Andreoni, H. Schiffer, J. Hutter, and M. Parrinello, J. Am. Chem. Soc. 119, 7218 (1997).

    Article  Google Scholar 

  86. M. Mohr, H. Zipse, D. Marx, and M. Parrinello, in preparation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marx, D. (1999). AB Initio Liquids: Simulating Liquids Based on First Principles. In: Caccamo, C., Hansen, JP., Stell, G. (eds) New Approaches to Problems in Liquid State Theory. NATO Science Series, vol 529. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4564-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4564-0_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5671-4

  • Online ISBN: 978-94-011-4564-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics