Skip to main content

Part of the book series: NATO Science Series ((ASIC,volume 529))

  • 230 Accesses

Abstract

The Gibbsian N-body density function of a Hamiltonian H N that is rotationally and translationally invariant must itself be rotationally and translationally invariant, as must then also be all reduced n-body density functions of this Hamiltonian. In particular, the one-body density is a constant and the two-body density depends only on relative coordinates. An external field destroys this homogeneity, producing anisotropy or nonuniformity [1, 2], and so makes necessary the joint calculation of the coupled one-body and two-body density functions. A striking if familiar example of the response of a bulk system to an external field is ferromagnetism. We shall use this particular case here to present a general procedure to compute the coupled one-body and two-body density functions of an inhomogeneous classical fluid in an external field. Remarkably, the procedure is no more difficult to carry through than similar calculations for ordinary homogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.D. Mermin, Phys. Rev. A 137, 1441 (1965).

    MathSciNet  ADS  Google Scholar 

  2. J.R. Henderson, in Fundamentals of Inhomogeneous Fluids (Dekker, New York, 1992), edited by D. Henderson, Chap. 2.

    Google Scholar 

  3. J. S. Høye and G. Stell, Phys. Rev. Lett. 36, 1569 (1976).

    Article  ADS  Google Scholar 

  4. M. J. P. Nijmeijer and J. J. Weis, Phys. Rev. Lett. 75, 2887 (1995)

    Article  ADS  Google Scholar 

  5. M. J. P. Nijmeijer and J. J. Weis, Phys. Rev. E 53, 591 (1996).

    Article  ADS  Google Scholar 

  6. J. J. Weis, M. J. P. Nijmeijer, J. M. Tavares, and M. M. Telo da Gama, Phys. Rev. E 55, 436 (1997).

    Article  ADS  Google Scholar 

  7. E. Lomba, J. J. Weis, N. G. Aimarza, F. Bresme, and G. Stell, Phys. Rev. E 49, 5169 (1994).

    Article  ADS  Google Scholar 

  8. J. M. Tavares, M. M. Telo da Gama, P. I. C. Teixeira, J. J. Weis, and M. J. P. Nijmeijer, Phys. Rev. E 52, 1915 (1995).

    Article  ADS  Google Scholar 

  9. See G. S. Cargill II and R. W. Cochrane, in Amorphous Magnetism, edited by H. O. Hooper and A. M. de Graaf (Plenum, New York, 1973), p. 313.

    Google Scholar 

  10. G. Bush and H. J. Guentherodt, Phys. Lett. 27A, 110 (1968)

    ADS  Google Scholar 

  11. B. Kraeft and H. Alexander, Phys. Konden. Mater. 16, 281 (1973).

    ADS  Google Scholar 

  12. T. Albrecht, C. Bührer, M. Fähnie, K. Maier, D. Platzek, and J. Reske, Appl. Phys. A 65, 215 (1997).

    Article  ADS  Google Scholar 

  13. J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).

    Google Scholar 

  14. D. Henderson, in Fundamentals of Inhomogeneous Fluids (Dekker, New York, 1992), edited by D. Henderson, Chap. 4.

    Google Scholar 

  15. F. Lado and E. Lomba, Phys. Rev. Lett. 80, 3535 (1998).

    Article  ADS  Google Scholar 

  16. F. Lado, E. Lomba, and J. J. Weis, Phys. Rev. E (to be published).

    Google Scholar 

  17. F. Lado, Phys. Rev. E 55, 426 (1997).

    Article  ADS  Google Scholar 

  18. C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Volume 1.

    MATH  Google Scholar 

  19. See, for example, G. Arfken, Mathematical Methods for Physicists (Academic, Orlando, 1985), Chap. 9.

    Google Scholar 

  20. N. I. Akhiezer, The Classical Moment Problem (Hafner, New York, 1965), Chap. 1.

    MATH  Google Scholar 

  21. F. Lado, Mol. Phys. 47, 283 (1982).

    Article  ADS  Google Scholar 

  22. Since the interatomic vector r 12 is completely decoupled from the spin orientations Ĺť1 and Ĺť2 in the Heisenberg fluid, the solution of the (OZ + closure) equations here is actually simpler than that described in Ref. [19).

    Google Scholar 

  23. G. Zerah and J. P. Hansen, J. Chem. Phys. 84, 2336 (1986).

    Article  ADS  Google Scholar 

  24. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, (Pergamon, Oxford, 1984), Second Edition, Section 46.

    Google Scholar 

  25. C. Holm and W. Janke, Phys. Rev. B 48, 936 (1993).

    Article  ADS  Google Scholar 

  26. K. Chen, A. M. Ferrenberg, and D. P. Landau, Phys. Rev. B 48, 3249 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lado, F., Lomba, E. (1999). Inhomogeneous Fluids in an External Field. In: Caccamo, C., Hansen, JP., Stell, G. (eds) New Approaches to Problems in Liquid State Theory. NATO Science Series, vol 529. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4564-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4564-0_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5671-4

  • Online ISBN: 978-94-011-4564-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics