Skip to main content

Design and Process of Non-Oxide Ceramics

Case study: factors affecting microstructure and properties of silicon nitride

  • Chapter
Materials Science of Carbides, Nitrides and Borides

Part of the book series: NATO Science Series ((ASHT,volume 68))

Abstract

The major advantages over metals of ceramics based on nitrides, carbides and bondes are their high temperature behaviour and specific functional properties. Generally the performance requirements or desirable properties are a combination of the following features: controlled microstructure, mechanical strength, resistance to deformation or creep at high temperature, thermal shock resistance, hardness, wear and abrasion resistance, resistance to oxidation and corrosion, specific optical, electrical and magnetic functions, controlled thermal conductivity and thermal expansion [1-3]. The large variety of potential application for engineering ceramics make the development strategies of these materials very complicated [4-8]. Commercial manufacture of ceramic products is only undertaken against a number of targets: properties of materials, performance of the product, size and shape of components and required tolerances, cost of the product. The first two factors are determined by the chemical compounds employed and by the microstructure achieved, the latter two factors are question of choice of a plant, reliability of manufacture and the overall cost-effectiveness of the process [9].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Komeya, K. and Matsui, M., (1994) High Temperature Engineering Ceramics, in R. W. Cahn, P. Hassen, E. J. Kramer (Eds) Materials Science and Technology, Vol 11, VCH Weinheim, pp. 517–566.

    Google Scholar 

  2. Hampshire, S. (19..) Nitride Ceramics, in. R. W. Cahn, P. Hansen, E. J. Kramer (Eds) Materials Science and Technology, Vol 11,VCH Weinheim, pp. 119–172.

    Google Scholar 

  3. Ziegler, G., Heinrich, J. and Wotting, G. (1987) Review-Relationships between processing, microstructure and properties of dense and reaction bonded silicon nitride, J. Mat. Sci. 22, 3041–3086.

    Article  CAS  Google Scholar 

  4. Mecholsky, J.J. (1989) Engineering Research Needs of Advanced Ceramics and Ceramic-Matrix Composites, Am. Ceram. Soc. Bull. 68, 367–375.

    CAS  Google Scholar 

  5. Katz, R. (1988) High performance Ceramics Prepare for the 21° Century, in C. C. Sorrell and B. B. Niesen (eds.), Ceramic Development, Materials Science Forum Vols 34–36, Trans Tech Publ., Switzerland, pp. 9–16.

    Google Scholar 

  6. Sheppard, L. M. and Barks, R. (1993) The Business of Technology: Valuing Ceramic Technology as an Asset, Am. Ceram. Soc. Bull. 72, 89–92.

    Google Scholar 

  7. Smith, V., Deckman, B. and Brueck, D. (1994) Advanced Ceramics: where do we go from here?, Am. Ceram. Soc. Bull. 73, 49–52.

    CAS  Google Scholar 

  8. Lenoe, E. M. (1983) Recent Accomplishments and Research Needs in Structural Ceramics, in E. M. Lenoe, R.N. Katz and J. J. Burke (Eds.) Ceramics for High Performance Applications HI, Reliability, Plenum Press, New York, pp. 3–17.

    Chapter  Google Scholar 

  9. Morrell, R. (1996) Microstructural targets for ceramics, in R. W. Cahn, P. Hansen, E. J. Kramer (eds) Materials Science and Technology, Vol 17a, VCH Weinheim, pp. 1–26.

    Google Scholar 

  10. Raj, R. (1993) Fundamental Research in Structural Ceramics for Service Near 2000°C, J. Am. Ceram. Soc. 76, 2147–2173.

    Article  CAS  Google Scholar 

  11. Evans, A. G. (1990) Perspectives on the Development of High-Toughness Ceramics, J. Am. Ceram. Soc. 73, 187–206.

    Article  CAS  Google Scholar 

  12. Dressler, W. and Riedel, R (1997) Progress in Silicon-Based Non-Oxide Structural Ceramics, Int. J. of Refr. Met. & Hard Mat, 15, 13–47.

    Article  CAS  Google Scholar 

  13. WStting, G. and Ziegler, G. (1984) Influence of PowderPproperties and Processing Conditions on Microstructure and Mechanical Properties of Sintered Si3N4, Ceramics Int. 10 (1), 18–22.

    Article  Google Scholar 

  14. Lange, F. F. (1983) Fabrication and Properties of Dense Polyphase Silicon Nitride, Am. Ceram. Soc. Bull. 62, 1369–1374.

    CAS  Google Scholar 

  15. Kanazaki, S., Brito, M. E., Valecillos, M. C., Hirao, K. and Toriyama, M. (1997) Microstructure Designing of Silicon Nitride, J. Europ. Ceram. Soc., 17, 1841–1847.

    Article  Google Scholar 

  16. De With, G. (1996) Process Control in the Manufacture of Ceramics, in R. W. Cahn, P. Haasen, E. J. Kramer (Eds) Materials Science and Technology,Vol 17a, VCH Weinheim, pp. 27–68.

    Google Scholar 

  17. Chan, H. M. and Harmer, P. (1996) Fired Microstructures and Their Characterization, in R. W. Calm, P. Haasen, E. J. Kramer (eds) Materials Science and Technology,Vol 17B, VCH Weinheim, pp. 177–214.

    Google Scholar 

  18. Segal, D. (1989) Chemical Synthesis of Advanced Matrials, Cmbridge University Press, Cambridge.

    Book  Google Scholar 

  19. Segal, D. (1996), Chemical Preparation of Powders, in in R. W. Cahn, P. Haasen, E. J. Kramer (Eds) Materials Science and Technology,Vol 17A, VCH Weinheim, pp. 69–98.

    Google Scholar 

  20. Scarlett, B. (1996 Characterization of Particles and Powders, in in in R. W. Calm, P. Haasen, E. J. Kramer (Eds) Materials Science and Technology,Vol 17A, VCH Weinheim, pp. 99–126.

    Google Scholar 

  21. Huppmann, W. J. and Bauer, W. (1975) Characterization Degree of Mixing in Liquid-Phase Sintering Experiments, Powder Metallurgy,18, 249–256.

    CAS  Google Scholar 

  22. Bellsi, A. Monteverde, F. and Babini, G. N. (1997) Influence of Powder Treatment Methods on Sintering, Microstructure and Properties of Si3N4-Based Materials, in Engineering Ceramics ’96: Higher Reliability through Processing, NATO-ASI Series, High Technology Vol.25, Kluwer Academic Publ., Dordrecht, pp. 197–212.

    Google Scholar 

  23. Galassi, C., Biasini, V. and Bellosi, A. (1993) Effects of Powder Characteristics and Mixing Processes on the Microstructure and Properties of Silicon Nitride, Processing ofAdv. Mat. 3, 153–161.

    Google Scholar 

  24. Shaw, T. M. and Pethica, B. A. (1986) Preparation and Sintering of Homogeneous Silicon Nitride Green Compacts, J. Am. Ceram. Soc., 69 (2), 88–96.

    Article  CAS  Google Scholar 

  25. . Wang, C.M. and Riley, F.L. (1992) Alumina Coating of Si3N4 Powder, Am. Ceram. Soc. Bull.10,85-95.

    Google Scholar 

  26. Djuricic, B., Davies, I. J. Pickering, S., McGarry, D., Bullock, E., Verwerft, M., Bronsveld, P., and De Hosson, J. Th. M. (1995) Study of Particle Coating for the Design of Intergranular Phases in Engineering Ceramics, Silicates Industriels, 7. 8, 203–210.

    Google Scholar 

  27. Mah, T., Mazdiyasni, K. S. and Ruh, R. (1979) Characterization and Properties of Hot pressed Si3N4 with Alkoxy-derived CeO2 or Y2O3 as Sintering Aids, Am. Ceram.Soc. Bull. 58, 840–844.

    CAS  Google Scholar 

  28. Kim, J. S., Shubert, H. and Petzow, G. (1989) Sintering of Si3N4 with Al2O3 and Y2O3 added by Coprecipitation, J. Europ. Ceram. Soc. 5, 209–217.

    Article  Google Scholar 

  29. Kleebe, H.J. Braue, W. Shmidt, H., Pezzotti, G. and Ziegler, G. (1996) Transmission Electron Microscopy of Microstructures in Ceramic Materials, J. Europ. Ceram. Soc. 15, 667–674.

    Google Scholar 

  30. Richerson, D. W. (1982) Modern Ceramic Engineering,M. Dekker, Inc., New York

    Google Scholar 

  31. Processing of Ceramics, Part I,(1996) R. J. Brook (Ed), Materials Science and Technology, Vol 17A, VCH Weinheim.

    Google Scholar 

  32. Eisele, U. (1996) Sintering and Hot pressing, in R. W. Cahn, P. Haasen, E. J. Kramer (eds) Materials Science and Technology,Vol 17B, VCH Weinheim, pp. 84–98.

    Google Scholar 

  33. Kwon, O.-H., (1996) Liquid-Phase Sintering, in R. W. Cahn, P. Hassen, E. J. Kramer (eds) Materials Science and Technology,Vol 17B, VCH Weinheim, pp. 99–122.

    Google Scholar 

  34. Yan, M. F., (1987) Effects of Physical, Chemical and Kinetic Factors on Sintering, in Advances in Ceramics, Vol 21 Ceramic Powder Science, The Am. Ceram. Soc., Westerville, pp. 653–669.

    Google Scholar 

  35. Hampshire, S. and Jack, K. H. (1981) The Kinetics of Densification and Phase Transformation of Nitrogen Ceramics, in Special Ceramics 7, D. E. Taylor and P. Popper (Eds), PROB. Britich Ceram. Soc.31,Stoke on Trent, pp. 37–49.

    Google Scholar 

  36. Babini, G. N., Bellosi, A. and Vincenzini, P. (1984) Densification and a-*13 Transformation Mechanisms during Hot pressing of Si3N4–Y2O3-SiO2, Mater. Chem. and Phys., 11,365–379.

    Article  CAS  Google Scholar 

  37. Cambier, F., Leriche, A. and Vandeneede, V. (1986) Powder Characterization and Optimization of Fabrication and Processing for Sintered Silicon Nitrides, part I, in Ceramic Materials and Components for Engines,W. Bunk anf H. Hausner (Eds.), Verlag Deutsche Keramische Gesellscaft, pp. 55–63.

    Google Scholar 

  38. Pickup, H., Gilbart, E. and Brook, R. J. (1986) Analysis of Coarseneng and Densification Kinetics during Heat Treatment of Nitrogen Ceramics, in Non Oxide Technical and Engineering Ceramic Conference,S. Hampshire (Ed.), Elsevier Applied Science, pp. 41–52.

    Chapter  Google Scholar 

  39. Kingery, W. D., Wolbround, J. M. and Charvat, F. R. (1963) Effect of Applied Pressure on Densification during Sintering in the Presence of a Liquid Phase, J. Am. Ceram. Soc.,46,391–399.

    Article  CAS  Google Scholar 

  40. Coble, R. L. (1963) Diffusion Models for Hot Pressing with Surface Energy and Pressure Effects as Driving Force, J. Appl. Phys., 34, 1679–1687.

    Article  Google Scholar 

  41. Brook, R. J., Carruthers, T. G., Bowen, L.J., Weston, R. J. (1977) Mass Transport in the Hot Pressing of Silicon Nitride, in Nitrogen Ceramics, F. L. Riley (ed), Leyden, Netherland, Noordhoff, pp. 383–390.

    Chapter  Google Scholar 

  42. Levin, E. M. and McMurdie, H. F. (1975) Phase Diagrams for Ceramists, M. H. Reser (Ed.), The Am. Ceram: Soc., Columbus, Ohio.

    Google Scholar 

  43. Levin, E. M., McMurdie, H. F. and Robbins, C. R. (1969) Phase Diagrams for Ceramists, Suppl. Ed by M. K. Reser,The Am. Ceram: Soc., Columbus,Ohio.

    Google Scholar 

  44. Babini, G. N., Bellosi, A. and Vincenzini, P. (1980) Hot pressing of Silicon Nitride with Ceria Additions, Ceramurgia Int., 6, 91–98.

    Article  CAS  Google Scholar 

  45. Babini, G. N., Bellosi, A. and Vincenzini, P. (1980) Mechanisms of Densification of Silicon Nitride Hot Pressed with Magnesia Additions, Annali di Chimica, 507–530.

    Google Scholar 

  46. Galassi, C., Rastelli, E., Roncari, E:, Ardizzone, S.,and Cattania, M.G.(1995) Characterization and Stabilization of Si3N4 suspensions, J. Mater. Res.,10, 339–344.

    Article  CAS  Google Scholar 

  47. . Bertoni, F., Galassi, C., Ardizzone, S. and Bianchi C. L. (1998) Water Based Si3N4 Suspensions: Effect of Processing Routes on th eSurface Chemistry and Particle Interactions, (Part. I), submitted for publication to Journal of Materials. Research.

    Google Scholar 

  48. . Bertoni, F., Galassi, C., Ardizzone, S. and Bianchi C. L. (1998) Surface Modification of Si3N4 Powders by Coprecipitation of Sintering Aids, submitted for publication to Journal of American. Cermic. Soc.

    Google Scholar 

  49. Liden, E., Bergstrom, L. Persson, M. and. Carlsson, R. (1991) Surface modification and Dispersion of Silicon Nitride and silicon Carbide Powders, J. Europ. Ceram. Soc. 7, 361–368.

    Article  CAS  Google Scholar 

  50. Strauss, M., Ring, T., Bleier, A. and Bowen, H. K. (1963)J Appl. Phys. 58, 3871–3880.

    Google Scholar 

  51. Bellosi, A. and Babini, G. N.(1998) Effects of Raw Powders on Microstructure and Properties of Si3N4Based Ceramics, in press on the Proceedings of EnCera ’98, Osaka, Sept. 6–9, 1998.

    Google Scholar 

  52. Kleebe, H. J. and Ziegler, G. (1989) Influence of Crystalline Secondary Phases on Densification Behaviour of Reaction Bonded Silicon Nitride during Post Sintering under Increased Nitrogen Pressure, I. Am. Ceram. Soc. 72, 2314–17.

    Article  CAS  Google Scholar 

  53. Grillon, M. D., Ricciardiello, F., Bellosi, A. and Galassi, C. (1993) Chemical Methods on the Additivation of Silicon Nitride Powders, in S. Daolio, E. Tondello, P. Vigato (Eds.) Sintesi e Metodologie Speciali in Chimica Organica, Litografia La Photograph, Padova, 290–294.

    Google Scholar 

  54. Kulig, M., Oroschin, W. and Greil, P. (1989) Sol gel Coating of Silicon Nitride with Mg-Al Oxide Sintering Aids, J. Europ. Ceram. Soc., 5, 209–217.

    Article  CAS  Google Scholar 

  55. Liden, E., Persson, M., Carlstrom, E. and Carlsson, R. (1991) Electrostatic Adsorption of a Colloidal Sintering Agent on Silicon Nitride Particles, J. Am. Ceram. Soc.74, 1335–1339.

    Google Scholar 

  56. Garg, A. K. and De Jonghe, L. C. (1990) Microencapsulation of Silicon Nitride Particles with Yttria and Yttria-Alumina Precursors, J. Mater. Res. 5, 136–142.

    Article  CAS  Google Scholar 

  57. Joshi, P. N. and McCauley, R. A. (1994) Metal-Organic Surfactants as Sintering Aids for Silicon Nitride in an Aqueous Medium, J. Am. Ceram. Soc.,77, 2926–2934.

    Article  CAS  Google Scholar 

  58. Schmidt, H., Naber, G., Ziegler, G. and Gorezki, H. (1995) Characterization and Surface Chemistry of Uncoated and Coated Silicon Nitride Powders, J. Europ. Ceram. Soc.15, 667–674.

    Article  CAS  Google Scholar 

  59. Lences, Z., Guicciardi, S., Melandri, C. and Bellosi, A.(1995) Preparation, Microstructure and Mechanical Property Relationships in Silicon Nitride Ceramics, British Ceram. Trams.94,138–145.

    CAS  Google Scholar 

  60. Groek, D. (1986) `Elementary Engineering Fracture Mechanics“ Martinus Nijhoff. Pub., The Netheralnds

    Google Scholar 

  61. Weibull, W. (1951) A Statistical distribution function of wide applicability, J Appl. Mech. 293–294.

    Google Scholar 

  62. Lewis, M. H. (1994) Crystallization of Grain Boundary Phases in Silicon Nitride and Sialon Ceramics, in Key Engineering Materials Vol. 89–91, Trans Tech Publications, Switzerland, pp. 333–338.

    Google Scholar 

  63. Bonnell, D. A., Tien, T. Y. and Ruehle, M. (1987) Controlled Crystallization of Amorphous Phase in Silicon nitride Ceramics, J. Am. Ceram: Soc. 70, 460–465.

    Article  CAS  Google Scholar 

  64. Mandal, T. and Thompson, D. P. (1995) Preparation and Characterization of Glass-Free Silicon Nitride Ceramics, in Fourth EuroCeramics, Vol.2,Development in Processing of Advanced Ceramics,, C. Galassi (Ed.), Gruppo Editoriale Faenza Editrice, Faenza, pp. 217–224.

    Google Scholar 

  65. Meissner, E., Kleebe, H. J. and Ziegler, G. (1993) Influence of Post-Sintering Anneal on Si3N4 Matrix-Grain Morphology, in Third EuroCeramics, P. Duran and J. F. Fernandez (Eds.), Faenza Editrice Iberica, Spain, pp. 397–430.

    Google Scholar 

  66. Tsuge, A. and Nishida, K., (1978) High Strength Hot Pressed Si3N4 with concurrent Y2O3 and Al2O3 additions, Am. Ceram. Soc. Bull., 57, 424–426.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bellosi, A. (1999). Design and Process of Non-Oxide Ceramics. In: Gogotsi, Y.G., Andrievski, R.A. (eds) Materials Science of Carbides, Nitrides and Borides. NATO Science Series, vol 68. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4562-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4562-6_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5707-0

  • Online ISBN: 978-94-011-4562-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics