Skip to main content

Phase Transitions without Thermodynamic Limit

The Crucial Rôle of Possible and Impossible Fluctuations The Treatment of Inhomogeneous Scenario in the Microcanonical Ensemble

  • Conference paper
Book cover Nuclear Matter in Different Phases and Transitions

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 95))

Abstract

“In the thermodynamic limit the canonical and the microcanonical ensemble are equivalent in all details and generality.” Statements like this are found in many textbooks of statistical thermodynamics. It is the purpose of this contribution to show that this is not so, and, more importantly, that the microcanonical ensemble allows for significant insight into the mechanism of first order phase-transitions which is hidden in the canonical ensemble. E.g.: at the liquid-gas transition under given pressure large and fluctuating spatial inhomogeneities are created. This surface entropy Ssurf governs the surface tension. At the critical point TcrSsurf compensates even the surface energy of the ground state leading to the vanishing of the surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elliott, H., Lieb, H., and J. Yngvason, J., (1998) A guide to entropy and the second law of thermodynamics, cond-mat/9805005.

    Google Scholar 

  2. Gross, D.H.E., and Madjet, M.E., (1997) Z. Physik B 104, 541 and cond-mat/9707100.

    Article  ADS  Google Scholar 

  3. Gross, D.H.E., Ecker, A., and Zhang, X.Z., (1996) Ann. Physik 5, 446.

    MathSciNet  ADS  Google Scholar 

  4. Promberger, M., (1996) On a trivial aspect of canonical specific heat scaling, preprint, Univ. Erlangen.

    Google Scholar 

  5. Hill, T.L., (1964) Thermodynamics of Small Systems I+II, W.A. Benjamin Inc., New York, Amsterdam.

    Google Scholar 

  6. Boltzmann, L., (1981) Vorlesung über Gastheorie, Number 1. Akademische Druck-u. Verlagsanstalt, Graz.

    Google Scholar 

  7. Gross, D.H.E., Zhang, X.Z., and Xu, S.Y., (1986) Phys. Rev. Lett 56, 1544.

    Article  ADS  Google Scholar 

  8. Gross, D.H.E., Madjet, M.E., and Schapiro, O., (1997) Z. Phys. D 39, 75; cond-mat/9608103.

    Article  ADS  Google Scholar 

  9. van Hove, L., (1949) Physica 15, 951.

    Article  ADS  MATH  Google Scholar 

  10. Zhang, X.Z., Gross, D.H.E., Xu, S.Y., and Zheng, Y.M., (1987) Nucl. Phys. A 461, 668.

    Article  ADS  Google Scholar 

  11. Gross, D.H.E., (1990) Rep. Progr. Phys. 53, 605.

    Article  ADS  Google Scholar 

  12. Bixton, M., and Jortner, J., (1989) J. Chem. Phys. 91, 1631.

    Article  ADS  Google Scholar 

  13. Grimsditch, M., and Karpov, V.G., (1996) J. Phys.:Condens.Matter 8, L439.

    Article  ADS  Google Scholar 

  14. Gross, D.H.E., (1997) Phys. Rep. 279, 119.

    Article  ADS  Google Scholar 

  15. A. Z. Panagiotopoulos, A.Z., (1987) Mol. Phys. 61, 813.

    Article  ADS  Google Scholar 

  16. Evans, R., (1992), in Fundamentals of Inhomogeneous Fluids, Henderson, D., eds., M. Dekker Inc., New York, p. 85.

    Google Scholar 

  17. Ruelle, D., (1969) Statistical Mechanics, Rigorous Results, W.A. Benjamin, New York, Amsterdam.

    MATH  Google Scholar 

  18. Andersen, H.C., (1980) J. Chem. Phys. 72, 2284.

    Article  Google Scholar 

  19. Brown, D., and Clarke, J.H.R., (1984) Mol. Phys. 51, 1243.

    Article  ADS  Google Scholar 

  20. Procacci, P., and Berne, B.J., (1994) Mol. Phys. 83, 255.

    Article  ADS  Google Scholar 

  21. Allen, B.C., (1985), in Handbook of Thermodynamic and Transport Properties of Alkali Metals, Ohse, R.W., eds., Blackwell Scientific, Oxford, p. 691.

    Google Scholar 

  22. Gross, D.H.E., and Hervieux, P.A., (1995) Z. Phys. D 35, 27.

    Article  ADS  Google Scholar 

  23. Hensel, F., (1995) Adv. in Physics 44, 3.

    Article  ADS  Google Scholar 

  24. Ross, M., and Hensel, F., (1996) J. Phys.: Condens. Matter 8, 1909.

    Article  ADS  Google Scholar 

  25. Reif, F., (1965) Fundamentals of statistical and thermal physics, McGraw-Hill, New York.

    Google Scholar 

  26. Bréchignac, C., Cahuzac, Ph., Carlier, F., de Frutos, M., Leygnier, J., Roux, J.Ph., and Sarfati, A., (1995) Comments At. Mol. Phys. 31, 361.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gross, D.H.E. (1999). Phase Transitions without Thermodynamic Limit. In: Blaizot, JP., Campi, X., Ploszajczak, M. (eds) Nuclear Matter in Different Phases and Transitions. Fundamental Theories of Physics, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4556-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4556-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5934-3

  • Online ISBN: 978-94-011-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics