Skip to main content

Colour Deconfinement in High Energy Nuclear Collisions

  • Conference paper
  • 232 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 95))

Abstract

After a brief review of critical behaviour in finite temperature QCD, we survey the crucial features of deconfinement probes to be used in high energy nuclear collision studies. In the following we consider in particular charmonium dissociation as such a probe, discussing first the theoretical aspects and then an analysis of the experimental situation up to now. We close with some comments on what further studies are required to establish deconfinement in high energy heavy ion experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. See e.g. Laermann, E., (1996) Nucl. Phys. A 610, 1c; Karsch, F., (1995) Nucl. Phys. A 590, 367c.

    Article  ADS  Google Scholar 

  2. Blum, T., et al., (1995) Phys. Rev. D 51, 5153; I thank DeTar, C., for providing me with the figures shown here.

    Article  ADS  Google Scholar 

  3. Bjorken, J.D., (1983) Phys. Rev. D 27, 140.

    Article  ADS  Google Scholar 

  4. Matsui, T., and Satz, H., (1986) Phys. Lett. B 178, 416.

    Article  ADS  Google Scholar 

  5. Bjorken, J.D., (1982) Energy loss of partons in a quark-gluon plasma, Fermilab Pub-82/59-THY, (unpublished).

    Google Scholar 

  6. Eichten, E., et al., (1978) Phys. Rev. D 17, 3090; ibid. (1980) Phys. Rev. D 21, 203; Jacobs, S., et al., (1986) Phys. Rev. D 33, 3338.

    Article  ADS  Google Scholar 

  7. Karsch, F., et al., (1988) Z. Phys. C 37, 617.

    Article  ADS  Google Scholar 

  8. See e.g., Karsch, F., (1990), in Quark-Gluon Plasma, Hwa, R.C., ed., World Scientific Publishing Co., Singapore.

    Google Scholar 

  9. Kajantie, K., (1989) Nucl. Phys. A 498, 355c.

    Article  ADS  Google Scholar 

  10. Peskin, M.E., (1979) Nucl. Phys. B 156, 365; Bhanot, G., and Peskin, M.E., (1979) Nucl. Phys. B 156, 391.

    Article  MathSciNet  ADS  Google Scholar 

  11. Shifman, M.A., Vainshtein, A.I., and Zakharov, V.I., (1976) Phys. Lett. B 65, 255.

    Article  ADS  Google Scholar 

  12. Kaidalov, A., (1993), in QCD and High Energy Hadronic Interactions, Trân Thanh Vân, J., ed., Edition Frontieres, Gif-sur-Yvette.

    Google Scholar 

  13. Kharzeev, D., and Satz, H., (1994) Phys. Lett. B 334, 155.

    Article  ADS  Google Scholar 

  14. Abe, F., et al., (1997) Phys. Rev. Lett. 79, 572 and 578.

    Article  ADS  Google Scholar 

  15. Chang, C.H., (1980) Nucl. Phys. B 172, 425; Berger, E.L., and Jones, D., (1981) Phys. Rev. D 23, 1521; Baier, R., and Rückl, R., (1981) Phys. Lett. B 102, 364; Baier, R., and Rückl, R., (1983) Z. Phys. C 19, 251.

    Article  ADS  Google Scholar 

  16. Einhorn, M.B., and Ellis, S.D., (1975) Phys. Rev. D 12, 2007; Fritzsch, H., (1977) Phys. Lett. B 67, 217; Glück, M., Owens, J.F., and Reya, E., (1978) Phys. Rev. D 17, 2324; Babcock, J., Sivers, D., and Wolfram, S., (1978) Phys. Rev. D 18, 162.

    Article  ADS  Google Scholar 

  17. Bodwin, G.T., Braaten, E., and Lepage, G.P., (1995) Phys. Rev. D 51, 1125; Braaten, E., and Fleming, S., (1995) Phys. Rev. Lett. 74, 3327.

    Article  ADS  Google Scholar 

  18. Kharzeev, D., and Satz, H., (1996) Phys. Lett. B 366, 316.

    Article  ADS  Google Scholar 

  19. Badier, J., et al., (1983) Z. Phys. C 20, 101.

    Article  ADS  Google Scholar 

  20. Alde, D.M., et al., (1991) Phys. Rev. Lett. 66, 133 and 2285; McGaughey, P.L., et al., (1994) Phys. Rev. D 50, 3038.

    Article  ADS  Google Scholar 

  21. For a recent survey, see Gavai, R.V., et al., (1995) Int. I. Mod. Phys. A 10, 3043.

    Article  ADS  Google Scholar 

  22. Gerschel, C., and Huefner, J., (1992) Z. Phys. C 56, 171.

    Article  ADS  Google Scholar 

  23. Kharzeev, D., et al., (1997) Z. Phys. C 74, 307.

    Article  Google Scholar 

  24. Baglin, C., et al., (1989) Phys. Lett. B 220, 471; ibid. (1990) B 251, 465, 472; ibid. (1991) B 255, 459.

    Article  ADS  Google Scholar 

  25. Baglin, C., et al., (1995) Phys. Lett. B 345, 617.

    Article  ADS  Google Scholar 

  26. Gonin, M., (1996) Nucl. Phys. A 610, 404c; Lourenço, C., (1996) Nucl. Phys. A 610, 552c.

    Article  ADS  Google Scholar 

  27. Blaizot, J.-P., and Ollitrault, J.-Y., (1996) Phys. Rev. Lett. 77, 1703.

    Article  ADS  Google Scholar 

  28. Kharzeev, D., (1996) Nucl. Phys. A 610, 418c.

    Article  ADS  Google Scholar 

  29. Gavin, S., and Vogt, R., (1997) Phys. Rev. Lett 78, 1006.

    Article  ADS  Google Scholar 

  30. Capella, A., et al., (1997) Phys. Lett. B 393, 431.

    Article  ADS  Google Scholar 

  31. Gupta, S., and Satz, H., (1992) Phys. Lett. B 283, 439.

    Article  ADS  Google Scholar 

  32. Karsch, F., and Petronzio, R., (1988) Z. Phys. C 37, 627.

    Article  ADS  Google Scholar 

  33. Gonin, M., (1997), report at the RHIC Summer Study, Brookhaven National Laboratory; Kluberg, L., (1997), CERN Particle Physics Seminar.

    Google Scholar 

  34. Kharzeev, D., Nardi, M., and Satz, H., (1997) Anomalous J/ψ Suppression and the Nature of Deconfinement, hep-ph/970738.

    Google Scholar 

  35. Gavin, S., and Gyulassy, M., (1988) Phys. Lett. B 214, 241; Hüfner, J., Kurihara, Y., and Pirner, H.J., (1988) Phys. Lett. B 215, 218; Blaizot, J.-P., and Ollitrault, J.-Y., (1989) Phys. Lett. B 217, 386 and 392.

    Article  ADS  Google Scholar 

  36. Kharzeev, D., et al., (1997) Phys. Lett. B 405, 14.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Satz, H. (1999). Colour Deconfinement in High Energy Nuclear Collisions. In: Blaizot, JP., Campi, X., Ploszajczak, M. (eds) Nuclear Matter in Different Phases and Transitions. Fundamental Theories of Physics, vol 95. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4556-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4556-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5934-3

  • Online ISBN: 978-94-011-4556-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics